
Communication-Avoiding Parallel Minimum Cuts

and Connected Components

Lukas Gianinazzi

ETH Zurich

Department of Computer Science

glukas@student.ethz.ch

Pavel Kalvoda
∗

ETH Zurich

Department of Computer Science

kalvodap@student.ethz.ch

Alessandro De Palma

ETH Zurich

Department of Computer Science

depalmaa@student.ethz.ch

Maciej Besta

ETH Zurich

Department of Computer Science

maciej.besta@inf.ethz.ch

Torsten Hoefler

ETH Zurich

Department of Computer Science

htor@inf.ethz.ch

Abstract

We present novel scalable parallel algorithms for finding

global minimum cuts and connected components, which are

important and fundamental problems in graph processing.

To take advantage of future massively parallel architectures,

our algorithms are communication-avoiding: they reduce the

costs of communication across the network and the cache

hierarchy. The fundamental technique underlying our work

is the randomized sparsification of a graph: removing a frac-

tion of graph edges, deriving a solution for such a sparsified

graph, and using the result to obtain a solution for the origi-

nal input. We design and implement sparsification with O(1)

synchronization steps. Our global minimum cut algorithm

decreases communication costs and computation compared

to the state-of-the-art, while our connected components al-

gorithm incurs few cache misses and synchronization steps.

We validate our approach by evaluating MPI implementa-

tions of the algorithms on a petascale supercomputer. We

also provide an approximate variant of the minimum cut

algorithm and show that it approximates the exact solutions

well while using a fraction of cores in a fraction of time.

CCSConcepts •Theory of computation→Distributed

algorithms;

∗
Pavel Kalvoda was a student at ETH Zurich at the time of his involvement,

but is now employed by Google Inc.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00

https://doi.org/10.1145/3178487.3178504

Keywords Parallel Computing, Minimum cuts, Random-

ized Algorithms, Graph Algorithms

ACM Reference Format:

Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej

Besta, and Torsten Hoefler. 2018. Communication-Avoiding Parallel

MinimumCuts and Connected Components. In PPoPP ’18: PPoPP ’18:
23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, February 24–28, 2018, Vienna, Austria. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3178487.3178504

1 Introduction

Graph computations are behind many problems in machine

learning, social network analysis, and computational sci-

ences [28]. An important and fundamental class are graph

connectivity algorithms, such as finding minimum cuts or

connected components.

The global minimum cut problem is a classic problem in

graph theory; it finds a variety of applications in network

reliability studies [23], combinatorial optimization [25], ma-

trix diagonalization, memory paging, gene-expression anal-

yses [39], and large-scale graph clustering [40]. Connected
components is a well-studied problem with a plethora of

applications, for instance in medical imaging [46], image

processing [21, 32], and computer vision [49].

Designing efficient parallel graph algorithms is challeng-

ing due to their properties such as irregular and data-driven

communication patterns or limited locality. These properties

result in movements of large amounts of data on shared-

memory (e.g., cachemisses) and distributed-memory systems

(e.g., network communication), having a negative impact on

performance [20, 31, 33]. Moreover, synchronization barri-

ers that enforce data dependencies are costly and have to be

used with caution [7].

Communication-avoiding algorithms, which require asymp-

totically less communication than their alternatives [20], alle-

viate these issues. Developing and analyzing such schemes re-

quires models that explicitly incorporate the cost of commu-

nication. One example is the Cache-Oblivious (CO)model [11]

which enables designing algorithms which reduce cache

219

https://doi.org/10.1145/3178487.3178504
https://doi.org/10.1145/3178487.3178504
http://www.acm.org/publications/policies/artifact-review-badging#available

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

Supersteps Computation Communication Volume Cache Misses Space

Previous BSP△ [4] O
(
logn log2 p

)
Θ

(
n2

log
3 n logp
p

)
Θ

(
n2(log2 n) log2 p

p

)
– O

(
n2

log
2 n

p

)
This paper ⋆ O

(
log

(
pm
n2

))
O

(
n2

log
3 n

p

)
O

(
n2(log2 n) logp

p

)
O

(
n2

log
3 n

Bp

)
O

(
min(m,

n2
log

2 n
p)

)
CO Karger-Stein [13] – O

(
n2 log3 n

)
– O

(
n2

log
3 n

B

)
O

(
n2

)
Table 1. Bounds for Computing a Minimum Cut. All algorithms are randomized and return correct results with high probability. Cache misses of the first

entry have not been studied. CO Karger-Stein is a sequential algorithm. (⋆) assuming pB ≤ n1−ϵ
, (△) assuming p ≤ n.

misses without the knowledge of the memory hierarchy.

Another example is the Bulk Synchronous Parallel (BSP)

model [47] which facilitates explicit reasoning about network

communication and synchronization costs. In this work, we

combine these two models for a more detailed analysis of

the communication costs of algorithms for finding global

minimum cuts and connected components.

Our randomized algorithms are based on a technique

called Iterated Sampling. The idea is to iteratively sparsify
the graph, i.e., derive a sparse random sample of the graph

that preserves the vertices but removes selected edges. This

technique was used to find minimum cuts in parallel [25];

we show that it also gives a communication-avoiding and

practical connected components algorithm. We perform Iter-

ated Sampling using O(1) synchronization steps with high

probability, ensuring O(1) such steps for finding connected

components and approximate minimum cuts. Moreover, it

allows us to compute minimum cuts that are exact with high

probability using O(logp) synchronisation steps, where p is

the number of processors.

Specifically, we improve upon a previous BSP approach [4]

to the global minimum cut problem in terms of both commu-

nication and computation costs, as shown in Table 1. We also

obtain a number of cache misses matching that of a recent

cache-oblivious sequential variant of the same algorithm [13].

Our experiments indicate that our algorithm indeed spends

little time communicating (Figure 1b), behaves according to

our model predictions (Figure 1a), and outperforms sequen-

tial codes with only a few processors.

We also propose an approximate variant of the minimum

cut algorithm that has near-linearwork and gives anO(logn)-
approximate minimum cut.

Finally, our sparsification technique gives a communication-

avoiding connected components algorithm with theoretical

bounds close to the state-of-the-art [2] when the average

degree is larger than the number of processors. When this is

the case, our connected components algorithm outperforms

established distributed memory and shared memory algo-

rithms in practice. If run sequentially, it is also faster than a

depth first search. We explain this by showing that although

we perform more instructions than the graph search, our

0

10

20

30

144 288 432 576 720 864 1008
Cores

E
xe

cu
tio

n
tim

e
[s

]

Application

MPI

(a) Strong scaling

0.01

0.03

0.05

0.07

144 288 432 576 720 864 1008
Cores

T M
P

I
T

(b)MPI time

Figure 1. Strong scaling on an Erdös-Rényi graphs (n = 96
′
000, d = 32).

Figure 1a shows the execution time, broken down into MPI and application

code; the points connected by the line represent the execution time predicted

by the model. Figure 1b shows the ratio of MPI to application time. The

lines represent the model prediction.

algorithm incurs three times fewer cache misses on sparse

graphs with about a million vertices.

2 Preliminaries

We first introduce the relevant concepts associated with

communication modeling and primitives (§ 2.1), discuss our

model of randomness (§ 2.2), and then define our problem

statement (§ 2.3). Finally, we overview the necessary back-

ground material (§ 2.4).

2.1 Machine and Cost Model

We now describe the unified communication model com-

bining network communication costs and data transfers in

caches; we also discuss the used collective operations and

our model of randomness.

Network Model We use the Bulk Synchronous Parallel

(BSP) model for network modeling and analysis. In BSP, the

computation is divided into a sequence of supersteps. In each

superstep, p processors first perform local computations and

then exchange messages. In particular, local computation

can only depend on messages sent in previous supersteps.

The computation time of a superstep is the largest num-

ber of local operations performed by any processor in that

superstep. The communication volume of a superstep is the

largest number of unit-size messages sent or received by any

processor during the superstep. The communication volume

220

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

and computation time of an algorithm is the sum of the com-

munication volume and computation time of all supersteps,

respectively.

Cache Model We use the Cache-Oblivious (CO) Model [11]
to analyze cache misses. This model assumes a single fully-

associative cache with an optimal replacement strategy, or-

ganized into blocks of B words and a total size ofM words.

B andM cannot be used in the algorithm description (hence

the name oblivious). This model has two advantages: bounds

proven for a simple two-level hierarchy generalize to an ar-

bitrarily deep hierarchy [11], and they hold up to constant

factors when executed with the Least-Recently Used (LRU)

eviction policy. Throughout this paper, we assume a tall

cache, that isM ∈ Ω(B2). This assumption is necessary [42]

and sufficient [11] to transpose an n×n matrix incurring the

optimal O(n2/B) cache misses.

Unified Communication Model We model both cache

effects and communication together by using the CO model

within the context of BSP. To achieve this, consistently with

the BSP definitions of computation time and communication

volume, we define the number of cache misses of a superstep

to be the largest number of cache misses incurred by any

processor during the superstep.

Collective Communication We use the following collec-
tive operations from theMessage Passing Interface (MPI) [43],

of which there are practical implementations [34]. For the

following, k elements x = x1, . . . xk are stored (as an array)

at a selected root processor.

broadcast: The root sends all k elements to all processors.

For the following, k elements x = x1, . . . ,xk are distributed

equally among the processors and there is a root processor.

reduce: Let⋆ be an associative operator. The root receives

x and computes x1 ⋆ x2 ⋆ . . . ⋆ xk .
gather: Each processor sends its k/p elements to the root.

all-reduce/all-gather: Computes a reduce / gather

and broadcasts the result.

The above collectives can be implemented in O(1) super-

steps,O(k) communication volume and time, andO(k/B + 1)
cache misses.

2.2 Randomness

Randomization has been a powerful tool in the design of

sequential [24, 35, 44] and parallel [12, 16, 37] algorithms.

We assume that each processor has access to an indepen-

dent, uniformly random, Ω(logn)-bit word in unit time.

A statement holds with high probability (w.h.p.) if it holds

with probability at least 1 − 1

nc for all c . For simplicity, we

provide proofs for fixed c , but it is straightforward to increase
the probabilities.

v1

v2

v3

v4

v5

v6
2

2

2

23
1

1

1

1

(a)

v1

v2

v3

v4,5 v6
2

2 5

1
1

1

(b)
Figure 2. The two partitions of a minimum cut are indicated by the vertex

shading. In 2a, the initial graph is shown. The dashed edges cross the

minimum cut, with weight 2. The graph in 2b shows the result of contracting

edge (v4, v5) — the minimum cut does not change.

2.3 Graphs, Cuts, Connected Components

Here, we present our graph model and define minimum cuts.

Graph Model We consider an undirected graph G with

vertex set V , edge set E ⊆ V × V , and weight function w :

E → N+. We write |V | = n and |E | = m. The weight of an

edge e = (v,u) isw(v,u) orw(e). The average degree ofG is

denoted by d .

Minimum Cuts A cut V ′
is a nonempty proper subset of

V . The value of a cut is the sum of the weights of the edges

with one endpoint in the cut and the other in its complement.

A (global) minimum cut is a cut of the smallest value. A cut

of value within a multiplicative factor α of the minimum cut

is an α-approximate minimum cut.
Throughout, we assume for simplicity of exposition that

the edge weights are bounded by the minimum cut value

times a polynomial factor in n. This assumption can be re-

moved by a preprocessing step [25, Section 7.1] without

increasing the presented bounds.

Connected Components A graphG is said to be connected

if a path exists between any pair of vertices. The connected

components of G are its maximal connected subgraphs.

2.4 Fundamental Techniques

Next, we discuss the fundamental techniques we use.

Edge Contractions To contract an edge is to merge its

endpoints into a single vertex, remove loops, and combine

parallel edges, see Figure 2. This operation was used previ-

ously for evaluating expression trees [36, Chapter 3.3] and

computing minimum spanning trees [24]. More importantly,

repeatedly contracting random edges gives an algorithm to

compute a minimum cut [25].

There is a crucial tradeoff for an approach to compute

minimum cuts based on random edge contraction: The fewer

vertices remain after contraction, the smaller the probabil-

ity that a minimum cut survives the contraction. On the

other hand, the fewer vertices remain, the faster we can pro-

cess the remaining graph. For now, we keep the number of

vertices that remain after the contraction as a parameter t .
Specifically, a graph is randomly contracted to t vertices by
repeatedly selecting an edge with probability proportional

to its weight and contracting it, until t vertices remain.

221

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

Edge contraction does not decrease the value of a mini-

mum cut. On the other hand, the value of a minimum cut

can increase when an edge that crosses all minimum cuts is

contracted.

It can be shown that a minimum cut survives random

contraction with non-negligible probability. Intuitively, this

holds because the total weight of the edges of a particular

minimum cut is small compared to the total edge weight.

Lemma 2.1 ([25] § 2). The probability that randomly con-
tracting a graph to t vertices does not change the value of a
minimum cut is at least t(t − 1)/n(n − 1).

Iterated Sampling In parallel, we want to contract many

random edges simultaneously for better performance. For

this purpose, Karger and Stein [25] introduced Iterated Sam-

pling. Instead of merging vertices and combining resulting

parallel edges after each contraction, they randomly select

a suitably sized set of edges E ′ ⊆ E. Then, they contract as

many edges of E ′
as possible while at least t vertices remain.

If the edges in E ′
do not suffice to reduce the number of

vertices to t , they contract all the edges in E ′
and repeat the

process. Fix some constant 0 < σ < 1.

Iterated Sampling repeats the following until |V | = t :

1 Sparsification Sample an array E ′ = E ′
1
, . . . ,E ′

s of s =
n1+σ edges. Sample every entry by choosing an edge

with probability proportional to its weight.

2 Prefix Selection Find the longest prefix (subarray start-

ing from the first element) P = E ′
1
, . . . ,E ′

k of E ′
such

that the graph (V , P) has at least t connected compo-

nents.

3 Bulk Edge Contraction Contract all the edges in P .

Notably, if the sum of the edge weights is bounded by

the minimum cut value times a polynomial factor in n, then
w.h.p. only O(1) iterations are required [25]. Intuitively, this

is because (with high probability) the sampled edges E ′
have

a large combined weight compared to the total weight of all

edges in E, thus contracting the edges in E ′
reduces the total

edge weight significantly.

In PRAM, Iterated Sampling takes O
(
log

2 n
)
time using

O
(
m/logn + n1+σ

)
processors, for any fixed 0 < σ < 1. Di-

rectly implementing the PRAMversionwould implyΩ(log2 n)
supersteps. In § 3 and § 4, we show how to reduce this num-

ber to only O(1) supersteps. By contracting the graph until

no edges are left, iterated sampling can be used to find con-

nected components in O(1) supersteps (cf. § 3.2).

Recursive Contraction Recursive Contraction [25] uses

random contraction to guess the minimum cut: 1 Randomly

contract the graph to

⌈
n/

√
2

⌉
+ 1 vertices (e.g., using iterated

sampling). 2 Copy the contracted graph and proceed recur-

sively on the two copies. 3 Once the number of vertices is

constant, compute the minimum cut deterministically.

Lemma 2.2 ([25] § 4). Recursive Contraction finds a particu-
lar minimum cut with probability at least 1/Ω(logn). Sequen-
tially, it takes O

(
n2 logn

)
time.

3 Sparsification and Graphs

A key common step is to implement a sparsification scheme

with O(1) supersteps to efficiently create a sparse sample of

G (§ 3.1). This first gives a simple communication-avoiding

connected components algorithm based on Iterated Sam-

pling (§ 3.2). Then, relying on this result, we derive a fast

approximation algorithm to the minimum cut problem (§ 3.3).

Both algorithms use O(1) supersteps and have near-linear

(in n) communication volume. We use an additional section

(§ 4) to describe our exact minimum cut algorithm.

Graph Representation We first present our graph rep-

resentations, as they are key to good performance for graph

algorithms. Adjacency lists, simple and successful in PRAM

settings [36], are difficult to distribute evenly across proces-

sors. Even in a graph of low d there can be many vertices

of high degree that, if stored in the same subset of proces-

sors, become a bottleneck. Thus, we employ a distributed
array of edges where each processor maintains an array of

O(m/p) weighted edges. Initially, the order is arbitrary. We

allow for parallel edges and denote with wi (ej) the sum of

the weights of the parallel edges representing ej stored in

processor i . In particular,wi (ej) = 0 if processor i does not
store ej andw(e) =

∑
i wi (e). If a graph is sufficiently dense

(m ≥ n2/logn), we store it as a distributed adjacency matrix
(AM), where every processor holds Θ(n/p) rows of the ma-

trix. The AM representation is crucial for enabling consistent

performance even on very dense graphs.

3.1 Communication-Avoiding Sparsification

Sparsification consists of sampling a sparser subgraph where

each edge e is chosen with probability proportional to its

weight w(e). When the graph is distributed across many

processors, we need to schedule the sampling carefully to

avoid communication.

Intuition We sample s random edges in a batched man-

ner. First, we choose how many edges should be sampled

from each processor’s slice. Then, each processor samples

that many edges. Finally, the samples have to be randomly

permuted, because the order matters for correctness: The

probability for an edge to end up in a particular position

must be the same for all positions [25].

Details 1 First, every processor pi computes the sumWi
of its slice’s edge weights. These values are gathered at the

root. 2 The root determines how the s edges are distributed
among the processors. Repeatedly (i.e., s times), it chooses

a processor pi with probabilityWi/
∑

zWz . The root notifies

each processor of how many edges it should sample. 3 Each

processorpi chooses as many edges as requested. Repeatedly,

it chooses an edge e with probability
wi (e)
Wi

and adds e to the

222

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

array of sampled edges. The sampled edges are gathered at

the root. 4 The root permutes the edges randomly, yielding

the final sample A = a1, . . . ,as .
TheoryWe show that we indeed sample edges indepen-

dently in A with probability proportional to their weight.

Lemma 3.1. The sample a1, . . . ,as is such that each element
ai satisfies P[ai = e] = w (e)∑

ek ∈E w (ek)
for all edges e ∈ E.

Proof. Let P(i) be the random variable for the processor

whose slice was used to sample ai . We proceed by condi-

tioning on P(i). Given that we sampled ai from processor

pj , the probability that a particular edge e ends up in ai is
P[ai = e |P(i) = pj] = w j (e)/Wj . To determine the prob-

ability that some processor pj was used to sample ai , we
condition on Kj , the number of times that processor pj was
chosen by the root. This yields:

P[P(i) = pj] =
∑
k

P[P(i) = pj |Kj = k]P[Kj = k]

=
1

s

(∑
k

kP[Kj = k]

)
=

Wj∑
zWz

.

For the second equality, we used that ifk samples are taken

from processor pj ’s slice, then the probability of a sample

from pj ending up in a given position i is k/s . This holds
because we apply a random permutation to the edge samples.

For the third equality, we used that (
∑

k kP[Kj = k]) is the
mean of Kj , which is binomially distributed. We conclude:

P[ai = e] =
∑
j

P[ai = e |P(i) = pj]P[P(i) = pj]

=
∑
j

(
w j (e)

Wj

Wj∑
zWz

)
=

w(e)∑
ek ∈E w(ek)

.

□

Lemma 3.2. Constructing a weighted edge sample of size s
takes O(1) supersteps, O(s + p) communication volume,
O

(
s logn + m

p

)
time, and O

(
s logn + m

pB

)
cache misses.

Proof. The computation of the local edges’ cumulativeweight

takes O(m/p) time. Next, each entry can be sampled in

O(logn) amortized time and cache misses (w.h.p.) after a

linear-time preprocessing step [25, § 5]. A processor obtains

at most s samples. The communication volume is O(p) to
send and receive the sizes of the samples at the root and

O(s) at every processor to send and receive the edges in

the corresponding subsample. Permuting the sample takes

O(s logn) time and O
(
(s/B) logM s

)
cache misses. □

3.2 Connected Components

We now introduce a connected components algorithm that

employs Iterated Sampling to contract every connected com-

ponent into a single vertex. The algorithm, based on Spar-

sification, uses O(1) supersteps and is work-efficient when

m/n1+ϵ ≥ p, for some ϵ > 0. In the semi-external setting

(the vertices fit into fast memory, while the edges do not)

andm ≥ pBn1+ϵ , our algorithm incurs the optimal number

of cache misses, O(m/pB).
IntuitionWe obtain a sparser subgraph (with Sparsifica-

tion), for which we sequentially compute connected compo-

nents. We then contract these components and repeat until

no edges are left. The remaining vertices correspond to the

connected components of the original input graph.

Details The root processor holds a vertex-indexed array

C = C1, . . . ,Cn associating each vertex i to its connected

component Ci . Initially Ci = i . We fix some small con-

stant ϵ > 0 and repeat the following as long as there is

some edge left. 1 We first sparsify the graph by choosing

n1+ϵ/2 edges E ′
. We gather these edges at the root. 2 The

root then computes the connected components of the graph

({Ci | i ∈ V }, E ′), creating a mapping д from every vertex to

its connected component’s label. The root broadcasts д and

updates every Ci to д(Ci). 3 We locally replace each edge

(u,v) with (д(u),д(v)) and remove all loops.

TheoryWe now present the algorithm’s bounds.

Theorem 3.3. The communication-avoiding connected com-
ponents algorithm takes, w.h.p., O(1) supersteps, O

(
n1+ϵ

)
com-

munication volume, and O
(
m/p + n1+ϵ

)
computation time. If

M ≥ 2n, it takes O
(
m/pB + n1+ϵ

)
cache misses.

Proof. As the algorithm is essentially Iterated Sampling with-

out Bulk Edge Contraction,O(1) iterations sufficew.h.p. until

all the edges are contracted. The communication bounds then

follow from our Sparsification algorithm (Lemma 3.2). If д
fits into cache, the renaming of the endpoints takes O(m/pB)
cache misses. □

By replacing the sequential connected components com-

putation at the root with a parallel algorithm, Sparsification

could be used to speed up other connected components al-

gorithms.

Since in the connected components problem edge weights

are irrelevant, we can work on unweighted graphs. This

allows us to reduce the time to sparsify the graph from

O(s logn +m/p) to O(s +m/p), an improvement that turned

out to be crucial in practice, even though it is not necessary

for Theorem 3.3.

Intuition Step 2 of our sparsification algorithm from

§ 3.1 can be avoided: each processor just samples slightly

more edges than we would expect, so that with high prob-

ability enough edges are sampled. Moreover, sampling on

unweighted edges is cheaper.

223

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

Details We fix some 0 < δ < 1. If the expected number

of edges µi that will be sampled from processor i is at least
(9 logn)/δ 2, we sample ⌈(1 + δ)µi ⌉ edges from processor i .
Otherwise, include every edge of processor i in the sample.

Theory The number of iterations does not increase if

we sample too many edges from a particular processor. A

Chernoff bound can be used to bound the probability that

more than (1 + δ)µi edges would have been sampled using

the original procedure. Finally, sampling can be done in O(1)

time per edge selection.

3.3 Approximate Minimum Cuts

Here, we sample subgraphs of varying expected sparsity and

test their connectivity; the sparsity at the moment that the

graph becomes disconnected estimates a minimum cut.

Intuition The connectivity of a random subgraph is re-

lated to the minimum cut value. Thus, the point at which

the sampled subgraph becomes disconnected gives an es-

timate of the minimum cut. To implement this efficiently,

we employ our communication-avoiding connected compo-

nents algorithm (§ 3.2) and show that we need only a single

connected components query.

DetailsOur algorithm computes anO(logn)-approximate

cut as follows. 1 We compute the sum of all the edgeweights

W with an all-reduce. 2 We perform ⌈lnW ⌉ iterations,

where the i-th iteration consists ofΘ(logn) repetitions (trials)
of the following: 2.1 sample a subgraphGi of G by keeping

each edge e with probability 1 − (1 − 2
−i)w (e)

, and 2.2 test if

the graph Gi is connected.

The output of the algorithm is 2
j
, where j is the smallest

iteration such that in at least one of its trials the graph G j is

disconnected.

In order to parallelize the procedure efficiently, the itera-

tions are pipelined: in each trial, every processor indepen-

dently samples a subgraph from its slice of the distributed

edge array. The vertices of each subgraph are assigned unique

labels associated to the trials.

Finally, a single connected components computation on

the union of the labeled subgraphs (over all trials of all itera-

tions) yields the results at once.

Theory We now show the bounds. For correctness, see

the online-only appendix.

Theorem3.4. The algorithm computes aO(logn)-approximate
minimum cut w.h.p. in O(1) supersteps, O

(
n1+ϵ

)
communi-

cation volume, and O

(
m log

3 n
p + n1+ϵ

)
time. IfM ≥ cn log2 n

(for some constant c), it takes O
(
m log

2 n
pB + n1+ϵ

)
cache misses.

Proof. The subgraphs can be generated in O((m logn)/p)
time and O(m/Bp) cache misses each. If the edge weights

are polynomial in n, only O
(
log

2 n
)
subgraphs are generated

overall. Note that this assumption could be removed. The

bounds then follow from our results on connected compo-

nents (Theorem 3.3).

□

In practice, we found that it does not pay off to pipeline

the outer loop. Instead, we perform the iterations one after

the other and stop at the first iteration where some graph

is disconnected. The number of supersteps of this variant

is O(log µ), where µ is the minimum cut value. The space

is reduced by a logn factor by this change and the time

becomes O
(
(m log µ log2 n)/p + n1+ϵ

)
. This variant is faster

when the minimum cut value is o(n).

4 Communication-Avoiding Mincuts

We now present our exact global minimum cut algorithm,

which uses Iterated Sampling (see § 2.4) at its core.

Overview To make Iterated Sampling communication-

avoiding, we use our communication-avoiding implementa-

tion of Sparsification from § 3.1. In contrast to the connected

components in § 3.2, here we need Bulk Edge Contraction

in order to combine the parallel edges that come from con-

traction, so that the graph representation remains concise

throughout the algorithm. We show how to implement Bulk

Edge Contraction in § 4.1. To obtain consistent performance

on graphs of different densities, we give two implementa-

tions: one for edge arrays and one for adjacency matrices.

Recursive Contraction (§ 2.4) combines multiple execu-

tions of random contraction to increase the probability of

preserving minimum cuts and, if repeated O
(
log

2 n
)
times,

it does so w.h.p. [25].

Intuition Recursive Contraction yields a fast minimum

cut algorithm for dense graphs (details in § 4.3). To achieve

O(1) supersteps and reduce communication for sparser graphs

(wherep ≤ n2/m), we randomly contract the graph toΘ(
√
m)

vertices with Iterated Sampling before running Recursive

Contraction once. We then repeat the sequence of the two

different contractions steps a number of times. We call the

first step Eager, as it reduces the number of vertices very

quickly before proceeding recursively.

Details Our minimum cut algorithm performs a number

of t = Θ(n
2

m log
2 n) trials, each of which returns a cut. The

result are the cuts of smallest value.

A trial has two main steps:

1 Eager Step Randomly Contract the graph to

⌈√
m

⌉
+ 1

vertices with a sparse implementation of Iterated Sam-

pling (§ 4.2).

2 Recursive Step RunRecursive Contraction using a dense

implementation of Iterated Sampling to perform ran-

dom contraction (§ 4.3).

We parallelize the trials depending on the number of pro-

cessors. If there are more trials than processors (p ≤ t), broad-
cast the graph, distribute the trials equally among the pro-

cessors, and perform them sequentially. Otherwise (p > t),

224

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

split the processors into equally sized groups. Each group

performs one trial in parallel.

4.1 Bulk Edge Contraction

Given a weighted graph G and a mapping д : V 7→ V ′
, the

task of Bulk Edge Contraction is to merge the vertices of G
according to д, i.e., merge the vertices that map to the same

label in V ′
.

Dense Bulk Edge Contraction We begin with the case

where the graph is represented as a distributed adjacency

matrix. We use this representation in Recursive Contraction.

There, the graphs can get arbitrarily dense even if the initial

graph has O(n) edges.
Intuition In an adjacency matrix, contraction sums the

rows and the columns of the vertices that map to the same

label in V ′
.

Details 1 For every vertex i in the contracted graph,

the processors set column i to be the sum of all columns

which map to i . 2 The processors transpose the matrix

and the columns are combined as in the previous step. 3

The diagonal of the matrix is set to zero. At this point, the

shrunken matrix has t rows and columns.

Theory The following Lemma shows the procedure’s

bounds.

Lemma 4.1. If p ≤ n, bulk edge contraction on a distributed
adjacency matrix takes O(1) supersteps, O

(
n2/p

)
communi-

cation volume and computation time. If pB ≤ n, it takes
O

(
n2/pB

)
cache misses.

Proof. Combining the columns is a local operation, which

takes O
(
n2/p

)
time and O

(
n2/(pB) + n

)
cache misses.

Transposing the matrix requires communication volume

and time O
(
n2/p + n

)
. □

Sparse Bulk Edge Contraction We cannot use the dense

version for the Eager Step, because it would incurΘ
(
n2

)
work

for each trial. As there are Ω((n2 log2 n)/m) trials, we can

only afford O(m logn) work per trial to ensure O
(
n2 log3 n

)
work.

Therefore, we use a different paradigm for the Eager Step.

Intuition After sorting the edges globally according to

their endpoints, every set of parallel edges will lie either

in a single processor, or in adjacent ones. This allows us to

combine them in a communication-avoiding way.

Details 1 The processors locally rename the endpoints

(replacing (u,v) with (д(u),д(v))) and remove loops. Think

of the modified graph as a multigraph whose parallel edges

we have to combine to obtain a graph. 2 Globally sort the

edges by their endpoints (first by the smaller endpoint, then

by the other endpoint). 3 Each processor locally combines

the parallel edges it has after the sorting. At every proces-

sor i , this gives an array Ai = l1i , l
2

i , . . . , l
ni
i , for some ni .

4 all-gather the first edge of each of the Ai , such that

each processor holds l = l1
1
, . . . l1p . The list l can still contain

parallel edges, but for each such parallel edge (u,v), there
can be at most one processor which has an edge parallel

to (u,v) which is not also in l . 5 For each distinct pair of

endpoints (u,v) in l , the leftmost processor which has an

edge with endpoints (u,v) increments its weight by the total

weight of the edges in l that are parallel to (u,v). If processor
i combined some parallel edges from l into l ′i its result is
l ′i , l

2

i , . . . , l
ni
i , otherwise it is l2i , . . . , l

ni
i .

For the proof of the following bounds, please refer to the

only-only appendix.

Lemma 4.2. If p ≤
√
m/logn, sparse bulk edge contraction

takes, with high probability, O(1) supersteps, O(m/p) commu-
nication volume,O

(
m
p logn + n

)
time, andO

(
m
pB logM +n/B

)
cache misses.

Notice that our edge contraction algorithm can be gener-

alized to group values by an arbitrary comparable key and

then combining them using any associative operator.

4.2 Eager Step

Running distributed edge array sparsification (Lemma 3.2)

and then sparse bulk edge contraction (Lemma 4.2), we ob-

tain a sparse implementation for Iterated Sampling. This is

the Eager Step.

4.3 Recursive Step

Asmentioned previously, the graphs can get arbitrarily dense

after contraction. Thus, it is crucial to be efficient on dense

graphs in the Recursive Step. We use a dense bulk edge

contraction to obtain a communication-avoiding adaptation

of Recursive Contraction.

Details 1 In each recursive call, half of the processors

continue to operate in parallel on one copy and the other

half continue to operate on the other copy of the graph. 2

Once a single processor is left, it computes a cut sequentially

using CO Karger-Stein [13].

4.4 Correctness and Bounds

We illustrated the main parts of the mincut algorithm. For the

proof of correctness, please refer to the online-only appendix.

Lemma 4.3. The communication-avoiding minimum cut al-
gorithm finds all minimum cuts w.h.p..

As summarised in Table 1, we get the following bounds:

Theorem4.4. Ifp ≤ n1−ϵ for some ϵ > 0, the communication-
avoiding minimum cut algorithm takes, w.h.p., O

(
log

pm
n2

)
supersteps, O

(
n2

p log
2 n log

pm
n2

)
communication volume, and

O

(
n2

p log
3 n

)
computation time. IfpB ≤ n1−ϵ , it takesO

(
n2

log
3 n

pB

)
cache misses. It uses O

(
min(m,

n2
log

2 n
p)

)
space.

225

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

5 Experiments

We now illustrate the advantages of our algorithms com-

pared to the state-of-the-art. To investigate the applicability

of the presented algorithms, we have devised MPI implemen-

tations in C++. We present the performance of our code on

several classes of inputs in different experimental settings.

Throughout the following, we refer to our implementations

as Connected Components (CC), Approximate Minimum

Cut (AppMC), and Minimum Cut (MC).

Experimental Setup The experiments were conducted on

CSCS Piz Daint, a leadership-class Cray XC50 computer, us-

ing a homogeneous subset of nodes, each with two 18-core

Intel Xeon E5-2695 v4 CPUs (3.30 GHz, 45 MiB Last Level

Cache (LLC) shared among all cores) and 64 GiB DDR3 mem-

ory, using all 36 physical cores per node. The interconnect

is Cray Aries (Dragonfly topology [26]). The filesystem does

not influence the results.

Considered Metrics and Events We measure several met-

rics indicative of overall performance. All measurements are

taken over the course of a single execution, which starts

when the input has been loaded into memory at the initial

set of nodes and ends when the result is available at a desig-

nated root processor. The metrics are: execution time; time
spent in MPI (the cumulative time spent in any MPI_* func-
tion over the course of the execution); the number of LLC
misses, as measured by a hardware counter; the number of

completed instructions as measured by a hardware counter.

We derive Instructions per Miss (IPM) as the ratio of the num-

ber of instructions to the number cache misses. The time

spent in MPI is a conservative estimate of the communica-

tion cost, as it also includes synchronization costs incurred

due to imbalance.

Methodology For all the metrics collected in a single execu-

tion, we always choose themaximum among all participating

processors. The presented datapoints always represent the

median of several executions.We collectedmeasurements un-

til the 95% confidence interval (CI) for the median was within

5% of the reported values, which provides a non-parametric

reliability guarantee [18, 27]. In cases where we were not

able to connect enough measurements, the 95% CI is shown.

All the experiments involving our randomized algorithms

were conductedwith 0.90minimum success probability. Each

execution of every experiment uses a different fixed seed for

the pseudorandom number generator (PRNG). We use the

PRNG presented by Salmon et al. [38] to ensure uncorrelated

parallel streams. We have observed no significant effect of

seed choice on the performance.

Tested Inputs In the systematic experiments, we use four

classes of synthetic graphs with distinct vertex degree dis-

tributions as well as spectral (and thus connectivity) prop-

erties: Watts-Strogatz [48] small-world graphs (with edge

BGL

0.05
0.10

0.50
1.00

5.00
10.00

50.00
100.00

400.00

1 6 12 18 24 30 36 42 48 54 60 66 72
Processors

E
xe

cu
tio

n
tim

e
[s

]

Implementation
CC

Galois

PBGL

(a) Sparse graph

BGL

0.05

0.10

0.20

0.50

1.00

2.00

5.00

1 6 12 18 24 30 36 42 48 54 60 66 72
Processors

E
xe

cu
tio

n
tim

e
[s

]

Implementation
CC

Galois

PBGL

(b) Dense graph
Figure 3. CC strong scaling on a sparse graph (3a, Barabasi-Álbert graph

with n = 1M , d = 32) and a dense graphs (3b, R-MAT graph with n =
128

′
000, d = 2

′
000). The line shows the BGL execution time.

rewiring probability p = 0.3), Barabasi-Álbert [3] scale-free
graphs, R-MAT graphs [6] (with a = 0.45, b = c = 0.22),
and Erdös-Rényi G(n,M) graphs [9] with a Poisson vertex

degree distribution.

5.1 Connected Components

Baselines We compare to both the Boost Graph Library

(BGL) sequential implementation [41], which uses a linear-

time graph traversal, as well as to the Parallel Boost Graph

Library (PBGL) implementation [15], which is based on an

O((n +m) logn) work algorithm that takes O(logn) super-
steps [14]. However, the PBGL implementation has weaker

guarantees. Moreover, we also compare to the asynchronous

implementation provided with Galois [30], a state-of-the-art

shared memory graph processing framework.

Performance and Scalability We consider strong scaling

on both sparse (Figure 3a) and dense (Figure 3b) graphs. On

the former, CC initially demonstrates speedups over both Ga-

lois and PBGL, but shows only limited scaling. This is due to

the inherently limited parallelism of our approach on sparse

graphs, especially compared to that of Galois. Sequentially,

we have found our algorithm to be slightly faster than both

BGL and Galois, which are about one order of magnitude

faster than PBGL.

In contrast, the dense graphs (Figure 3b) provide enough

parallelism to allow CC to demonstrate scalability compa-

rable to that of PBGL and Galois while being consistently

faster than both of them.

Cache Efficiency Figure 4 offers several insights into the

cache and network behavior of the algorithms under con-

sideration. Running sequentially, both CC and Galois incur

significantly fewer cache misses compared to PBGL as the

inputs grow larger. Interestingly, BGL exhibits worse perfor-

mance despite being explicitly designed and tuned for se-

quential scenarios, arguably due to the following inefficiency:

While BGL uses about 33% fewer instructions compared to

our algorithm, our significantly higher IPM (Figure 8b) re-

sults in higher Instructions per Cycle (IPC), which offsets the

extra work and produces a better trend as the problem size

increases (Figure 4b). This also suggests that efficient use of

the memory hierarchy has much greater practical effect than

226

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

0

1 × 107

3 × 107

5 × 107

7 × 107

128k 256k 384k 512k 640k 768k 896k 1024k
Vertices

LL
C

 m
is

se
s

Implementation
BGL

CC

Galois

(a) Cache misses

0.0

0.5

1.0

1.5

2.0

128k 256k 384k 512k 640k 768k 896k 1024k
Vertices

E
xe

cu
tio

n
tim

e
[s

]

Implementation
BGL

CC

Galois

(b) Sequential comparison

1 × 104

1 × 105

1 × 106

1 × 107

1 3 6 9 12 15 18 21 24 27 30 33 36
Cores

In
st

ru
ct

io
ns

 p
er

 L
LC

 m
is

s

Implementation
CC

Galois

PBGL

(c) Parallel comparison

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 6 9 12 18 24 30 36 42 48 54 60 66 72
Cores

E
xe

cu
tio

n
tim

e
[s

]
Application

MPI

(d) Strong scaling
Figure 4. Sequential CC cache efficiency compared to BGL (4a, 4b) on an

R-MAT graph with d = 256 and increasing number of vertices, and to PBGL

in parallel (4c) on an R-MAT graph with n = 128
′
000, d = 2

′
048. Figure 4d

shows strong scaling on the same graph as Figure 4c.

0

2

4

6

8

36 72 108 144 180 216 252 288 324 360
Cores

E
xe

cu
tio

n
tim

e
[s

]

Application

MPI

(a) Strong scaling

0.0

0.2

0.4

0.6

72 144 216 288 360 432
Cores

E
xe

cu
tio

n
tim

e
[s

]

(b)Weak scaling

Figure 5. AppMC scalability. Left: strong scaling on a dense graph R-MAT

graph (n = 256
′
000, d = 4

′
096). Right: weak scaling with increasing edge

count on an R-MAT graph with n = 16
′
000 and 2

′
048

′
000 edges per node.

the O(nϵ) work inefficiency incurred by our algorithm in

theory. When executed in parallel, compared to PBGL, both

CC and Galois incur a lower number of misses per instruc-

tion when the parallelism is low, but the IPM is eventually

matched as the parallelism is exhausted.

NetworkCommunication Wehave observed that theMPI

time constituted 9.6% of overall execution time on 72 cores,

growing steadily from 2.8% on 36 cores. In our experiments,

the MPI time ratio seems to depend on the number of nodes

rather than cores, which results in plateaus or declines be-

tween some measurements.

5.2 Approximate Minimum Cuts

We compare AppMC to MC. On sparse graphs, AppMC is

an order of magnitude faster than MC for the same inputs

as used on Figure 1, but, as expected, it does not scale as

far. However, on dense graphs with an average degree in

the order of thousands (Figure 5a), AppMC scales up to hun-

dreds of processors. Figure 5b shows that the execution time

remains close to constant when the number of edges and the

number of processors increase at the same rate. In particular,

increasing both the number of edges and processors by a

factor 8 increases the time by only a factor 1.55.

Communication Efficiency As the algorithm is built on

top of CC, its communication behaves similarly (see Fig-

ure 5a): the time spent in MPI takes up about 26% of the total

time on 144 cores.

5.3 Minimum Cuts

Baselines For smaller instances, we compare the execution

time of MC to two sequential baselines: the BGL implemen-

tation of a deterministic O
(
nm + n2 logn

)
time algorithm by

Stoer and Wagner [45] and a cache-oblivious implementa-

tion of Karger and Stein’s algorithm [13]. We refer to the

baselines as SW andKS respectively. To the best of our knowl-

edge, no parallel implementation of any (global) minimum

cut algorithm has been published.

Performance Model To link the observed data with the

theory, we developed and fitted a simple constant-factor per-

formance model for our code, translating the BSP bounds to

execution times. The model consists of the BSP computation

time, the BSP communication volume times logp (a factor

accounting for the MPI implementation overhead [19]), and

a constant term for overhead.

Strong Scaling First, we analyze strong scaling on a sparse

graph, where trials are not parallelized beyond their distri-

bution among processors (Figure 1). We see that increases in

parallelism yield good speedups and communication costs

remain low compared to computation at less than 9% on 1008

processors. There is a slight decrease in efficiency, which

is in part due to rounding in the distribution of the trials.

Compared to KS, we achieve about 20-fold speedup on 144

cores and 115 on 1008 cores, whilst SW is about 40x slower

than KS. The same trend applies to other classes of graphs.

For Watts-Strogatz and Barabasi-Álbert graphs, we have ob-

served around 4% difference in execution and MPI times. The

sparse implementation is thus largely insensitive to graph

structure, as expected.

0

10

20

30

40

48 96 192 384 768 1536
Cores

E
xe

cu
tio

n
tim

e
[s

]

Application

MPI

0.05

0.10

0.15

0.20

48 96 192 384 768 1536
Cores

T M
P

I
T

Figure 6. Strong scaling on an RMAT graph with n = 16
′
000, d = 4

′
000.

Left: execution time, with the model prediction denoted by the black points.

Right: Fraction of time spent in MPI.

In Figure 6, we investigate strong scaling on denser graphs.

The performance trend is similar, with near-linear scaling;

227

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

the efficiency is better than on the sparse graph due to the

significantly bigger input size. We also see that while com-

munication costs decrease proportionately to p as predicted,

they generally constitute a bigger fraction of the total time

than for the sparse algorithm. This is largely due to the much

more complex communication pattern. Finally, both of the

baselines timed out on these inputs, taking more than three

hours of compute time.

Weak Scaling In order to analyze the performance with an

increasing input size, we present a weak scaling experiment

summarized in Figure 7. Since our algorithm’s execution

time is close to n2, we expect the execution time to grow

linearly as we set a fixed value of n/p and increase both n
and p proportionally. Indeed, the trend holds closely for both

sparse and dense graphs, which implies good scalability with

the increasing input size. In particular, this highlights the

fact that our communication-efficient design ensures that

the relative cost of communication increases only slightly

with increasing scale, as predicted by our model.

1

2

3

4

5

16k 32k 48k 64k 80k 96k
Vertices

E
xe

cu
tio

n
tim

e
[s

]

2

4

6

8

10

12

14

4k 8k 12k 16k 20k 24k
Vertices

E
xe

cu
tio

n
tim

e
[s

]

Figure 7. Weak scaling on a sparse graph (left, Watts-Strogatz graph with

d = 32 and 4
′
000 vertices per node) and a dense graph (right, R-MAT with

d = 1
′
000 and 2

′
000 vertices per node). The lines interpolate the trend.

0

2500

5000

7500

8k 16k 24k 32k 40k 48k 56k
Vertices

In
st

ru
ct

io
ns

 p
er

 L
LC

 m
is

s Implementation
KS

MC

SW

(a) Minimum cuts

0

500

1000

128k 256k 384k 512k 640k 768k 896k 1024k
Vertices

In
st

ru
ct

io
ns

 p
er

 L
LC

 m
is

s Implementation
BGL

CC

Galois

(b) Connected components

Figure 8. IPM rate of MC (Figure 8a, setup identical to Figure 9) and CC

(Figure 8b, setup identical to Figure 4).

0

5 × 1010

1 × 1011

1.5 × 1011

8k 16k 24k 32k 40k 48k 56k
Vertices

LL
C

 m
is

se
s

Implementation
KS

MC

SW

(a) Cache Misses

9000

7000

5000

3000

1000

8k 16k 24k 32k 40k 48k 56k
Vertices

E
xe

cu
tio

n
tim

e
[s

]

Implementation
KS

MC

SW

(b) Execution Time

Figure 9. Comparison of sequential cache efficiency on an Erdös-Rényi

graph with d = 32 and a varying number of vertices.

Cache Efficiency Figure 9 offers several important insights

into the cache efficiency of KS, SW, and MC. We see that

while on graphs withm = O(n) all three algorithms have a

similar execution time of approximately O(n2), SW incurs

dramatically more cache misses than both KS and MC, as

shown in Figure 9a. Next, KS is significantly more efficient

than MC as it was specifically designed for sequential cache

efficiency, enabling a more compact representation without

buffers and other intermediate structures.

6 Related Work

Both connected components and minimum cuts have been

studied extensively in a variety of sequential and parallel

settings.

Global Minimum Cuts Numerous sequential determinis-

tic minimum cut algorithms have been proposed [5, 17, 29,

45], the fastest of which runs in O
(
nm + n2 logn

)
time. Ran-

domized algorithms have better bounds: A minimum cut can

be found w.h.p. in O
(
m log

3 n
)
time [22]. Recently, this algo-

rithm has been adapted to the cache-oblivious model [13]. A

parallel algorithm [25] that runs in polylogarithmic time on

an2 processors PRAM has been adapted to the BSP model [4].

We obtain improved bounds (see Table 1).

ST MinimumCuts and Maximum Flows Related to the

minimum cut problem is that of a minimum s-t-cut. This
problem requires that the vertices s and t are separated by

the cut (s is in the cut, t is not). The smallest minimum s-t-cut
over all (s, t) pairs is a minimum cut. In a flow network [10],

the value of a minimum s-t cut corresponds to the value of a
maximum s-t-flow. Recently, there has been some practical

work on performing approximate maximum s-t-flow com-

putations in parallel [50]. However, n − 1 maximum s-t-flow
computations are required to find a minimum cut and such

an approach yields a Ω(mn) work bound [50] compared to

our O
(
m log

3 n + n1+ϵ
)
work algorithm presented in § 3.3.

Connected Components Connected components can be

computed with O(logn) span and O(m + n) work [12]. In a

cache oblivious setting, computing connected components

incurs O(m logm) time and O
(
(m logM m)/B

)
cache misses

w.h.p. [1]. In the BSP model, Adler et al.[2] proposed an

algorithm which takes O(1) supersteps, O(m/p + n) com-

putation time, and O
(
m/p1+ϵ/2

)
communication volume if

p1+ϵ ≤ m/n for some ϵ > 0. Dehne et al. [8] presented a

Θ(logp) supersteps algorithm.

7 Conclusion

We designed and implemented practical communication-

avoiding algorithms for connected components and mini-

mum cuts. We obtained distributed-memory algorithms that

often perform only a constant number of collective com-

munication and synchronization operations, matching and

sometimes improving on previous theoretical bounds.

228

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

A Artifact description

A.1 Abstract

This artifact provides all the executables and the associated
scripts of the experiments of the paper “Communication-Avoiding
Parallel Minimum Cuts and Connected Components”.

A.2 Artifact check-list (meta-information)

• Algorithm: Iterated Sparse Sampling; ParallelMinimum

Cuts

• Program: CC; AppMC; MC

• Compilation: GCC 5.3 with -O3 -march=native -flto
via CMake. Linked with Boost 1.63.0

• Binary: parallel_cc, approx_cut, square_root for the

respective programs

• Data set: Publicly available graphs; Synthetic graphs

generated by open source software

• Run-time environment: Cray MPICH-2 7.2.2 MPI li-

braries and runtime; SUSE SLESLinux 11 (kernel 3.0.101);

Slurm 15.08.11

• Hardware: CSCS Piz Daint cluster (Cray XC50); Homo-

geneous set of nodes each with two 18-core Intel Xeon

E5-2695 v4 CPUs (Broadwell-E, 3.30 GHz, 45 MiB LLC)

and 64 GiB DDR3; Cray Aries interconnect

• Execution: Using 0.9minimum success probability for

all programs, with a new, independent random seed

for every run

• Output: Minimum cut value, minimum cut value ap-

proximation, number of connected components depend-

ing on the program along with instrumentation mea-

surements for each execution;Aggregated andprocessed

separately

• Publicly available?: Yes

A.3 Description

A.3.1 How delivered

Open source under the GPLv3 license. The code and parts of the dataset
as well as the complete experiment automation is hosted on GitHub
(https://github.com/PJK/comm-avoiding-cuts-cc).

A.3.2 Hardware dependencies

For result replication: An MPI system of comparable specification and
size.

A.3.3 Software dependencies

Required:

• C++11 compiler

• Boost C++ libraries

• MPI libraries and runtime

Facultative:

• PAPI 5.4 or newer (for cache complexity measurement)

• Parallel Boost Graph Library (PBGL) and the Boost MPI

utilities, which are an optional non-header-only part of Boost

(for PBGL baselines)

• BASH (or a compatible shell environment), Ruby 2, standard

GNU-like utilities, and the Slurm scheduling system (for

experiment automation)

• Python 3with the NetworkX package 1.10 or newer, PaRMAT

• An up to date R language platform with the following pack-

ages ggplot2, scales, reshape2, plyr, dplyr, cowplot
packages (for statistical evaluation)

Finally, we also bundle some dependencies with the code base.

More information can be found in README.md.

A.3.4 Datasets

We use a number of synthetic graphs as outlined in Section 5

of the paper, as well as several graphs from SNAPThese graphs

were either generated or preprocessed by the scripts located in

input_generators and utils. For bigger experiments, this is com-

pletely automated, as described in section A.5.

A.4 Installation

Download and unpack the artifact. Assuming and you are in a desig-

nated working folder and the source location is /path/to/mincuts,
simply run cmake /path/to/mincuts
to configure the build. Some functionality has to enabled by adding

the flags described in the README, e.g. -DPAPI_PROFILE=ON. This
step will also inform you about any missing dependencies. Run

the build by executing make in the same directory. The executables

can then be located in src/executables. We encourage you to

verify full functionality on some of the small test cases located in

test_inputs before proceeding.

A.5 Experiment workflow

In our particular setup, we uploaded the sources to the cluster and

performed the process described in the previous section using the

build_daint.sh script.

Then, evaluation inputs were generated. Every input graph is

contained in a single file, stored as a list of edges together with

associated metadata.

For smaller experiments, this was done manually by invoking

the generators, as described in the README. For the bigger ex-

periments, we use scripts located in input_generators that often

generate the complete set of inputs.

For example, in the AppMC weak scaling experiment (Figure 6

in the paper), codenamed AWX, the inputs were first generated by

running input_generators/awx_generator.sh
which outputs the graphs in the corresponding folder.

In order to execute the experiments, we run the scripts located

in experiment_runners .

Each script describes one self-contained experiment. Following our

earlier example, we would run the

experiment_runners/awx.sh
script to execute the experiment. This submits a number of jobs

corresponding to the different data points to the scheduling system.

Every job outputs a comma-separated list of values (CSV) describ-

ing properties of execution, similar to the one shown in Listing 1.

Once all the jobs finish, we filter, merge, and copy relevant data

from the cluster to a local computer using

experiment_runners/pull_fresh_data.sh
which results in one CSV file per experiment or part of experiment.

The output mirrors the input folder structure and is located in

evaluation/data. For reference, we have included the measure-

ments we used for the figures in this paper. These are located in

evaluation/data.

229

https://github.com/PJK/comm-avoiding-cuts-cc

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

Listing 1. Output format example. First line describes PAPI counter values, second one is the profiling output, consisting of input and seed information,

execution and MPI time, parallelism information, and the summarized result.

PAPI , 0 , 3 9 1 2 5 7 4 9 , 6 2 7 9 9 8 4 2 5 , 1 1 8 4 5 3 9 1 6 6 , 1 0 1 2 6 5 8 7 3 7 , 3 5 0 1 5 9 7 0 , 5 3 8 2 4 3 9 , 0 . 0 1 1 9 0 4 7

/ s c r a t c h / i n pu t s / cc1 / ba_1M_16 . in , 5 2 2 6 , 1 , 1 0 2 4 0 0 0 , 1 6 3 8 3 7 4 4 , 0 . 4 2 8 9 7 2 , 0 . 0 1 1 9 0 5 , cc , 1

The data is then loaded into a suite of R scripts located in

evaluation/R. The evaluation/R/common.R file is perhaps of

most interest, as it contains the routines that aggregate the data

and verify the variance. These routines are used to build a separate

analysis for every experiment. Referring back to our example ex-

periment, the evaluation/R/awx.R is the script that was used to

produce Figure 6.

In case the statistical significance of results is found to be unsat-

isfactory during this step (verified by the verify_ci routine found

in evaluation/R/common.R) , we repeat the experiment execution

and the following steps. One presented datapoint is typically based

on 20 to 100 individual measurements.

A.6 Evaluation and expected result

Our presentation is focused on performance, which we validate

against our model in Section 5 of the paper. We therefore limit

ourselves to a brief description of measurement tools, and elaborate

on steps we have taken to validate correctness.

A.6.1 Performance

We measure the time by a simple source-level instrumentation.

Unless detailed profiling is enabled at compile-time, only a constant

number of measurements is taken per execution.

We use a monotonous variant of C++

std::chrono::high_resolution_clock
for our timers, which guarantees that the underlying timer has

at least the precision and resolution of POSIX clock_gettime on
our system, which is more than sufficient given the relatively high

quantities we deal with.

The quantity referred to as “time spent in MPI” throughout the

paper is obtained by instrumenting all MPI library calls using the

aforementioned timers.

The cache usage data are obtained using PAPI. On our system,

all the events we used map directly to hardware counters, provid-

ing cycle-precise results. In order to prevent interference between

executions of parallel_cc, we perform a pointer chase to ensure

eviction of any data from the previous trial. It’s effectiveness has

been statistically verified.

A.6.2 Correctness

Since our algorithms pose the challenge of Monte Carlo randomiza-

tion, we have constructed the code such that all non-determinism

is controlled by a single initial seed. This enables us to easily verify

that multiple executions are consistent, in the sense that executions

with the same random events produce the same result.

However, this gives no particular guarantee of correctness. For

this purpose, we use three main approaches for the MC:

• We have a set of corner-cases with known, deterministic cut

values, generated by

input_generators/verification_graphs.sh
against which we repeatedly test.

• For smaller inputs where running a deterministic sequential

algorithm is possible, we simply check the result against the

reference baseline. We have observed no failures, which may

in part be due to the fact that practical graph models do not

provoke the worst-case behavior.

• For big inputs where this is not a possibility, we compare

multiple randomly seeded runs of square_root on the same

input and verify that all results are the same. Since every

execution succeeds with probability p ≥ 0.9 and we conduct

at least 20 runs for every datapoint, the probability pf ≤

(1 − p)20 of all of them being wrong is negligible.

For the AppMC, we compare the cut value approximation with

the result given by MC and have observed an approximation ratio

below 11 for all inputs.

For the CC, we have looked at several test inputs in detail. The

bigger graphs were checked against the BGL baseline, and we have

observed no failures at all.

A.7 Experiment customization

Experiments can be modified or added by modifying the corre-

sponding scripts in the experiment_runners folder.

A.8 Notes

Additional technical information is provided in the source code.

Visit https://github.com/PJK/comm-avoiding-cuts-cc to send

feedback, report issues, or collaborate on further development.

230

https://github.com/PJK/comm-avoiding-cuts-cc

Parallel Minimum Cuts and Connected Components PPoPP ’18, February 24–28, 2018, Vienna, Austria

References

[1] James Abello, Adam L. Buchsbaum, and Jeffery Westbrook. 1998. A

Functional Approach to External Graph Algorithms. In Proceedings of
the 6th Annual European Symposium on Algorithms (ESA ’98). Springer-
Verlag, London, UK, UK, 332–343. http://dl.acm.org/citation.cfm?id=
647908.740141

[2] Micah Adler, Wolfgang Dittrich, Ben Juurlink, Miroslaw Kutylowski,

and Ingo Rieping. 1998. Communication-optimal Parallel Minimum

Spanning Tree Algorithms (Extended Abstract). In Proceedings of the
Tenth Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’98). ACM, New York, NY, USA, 27–36. https://doi.org/10.1145/
277651.277662

[3] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics

of complex networks. Rev. Mod. Phys. 74 (Jan 2002), 47–97. Issue 1.

https://doi.org/10.1103/RevModPhys.74.47
[4] Friedhelm Meyer auf der Heide and Gabriel T. Martinez. 1998.

Communication-efficient parallel multiway and approximate mini-

mum cut computation. In LATIN’98: Theoretical Informatics. Springer,
316–330.

[5] Michael Brinkmeier. 2007. A Simple and Fast Min-Cut Algorithm.

Theory Comput. Syst. 41, 2 (2007), 369–380. https://doi.org/10.1007/
s00224-007-2010-2

[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004.

R-MAT: A Recursive Model for Graph Mining. In Proceedings of the
Fourth SIAM International Conference on Data Mining, Lake Buena Vista,
Florida, USA, April 22-24, 2004, Michael W. Berry, Umeshwar Dayal,

Chandrika Kamath, and David B. Skillicorn (Eds.). SIAM, 442–446.

https://doi.org/10.1137/1.9781611972740.43
[7] Ding-Kai Chen, Hong-Men Su, and Pen-Chung Yew. 1990. The Impact

of Synchronization and Granularity on Parallel Systems. SIGARCH
Comput. Archit. News 18, 2SI (May 1990), 239–248. https://doi.org/10.
1145/325096.325150

[8] Frank K. H. A. Dehne, Afonso Ferreira, Edson Cáceres, Siang W. Song,

and Alessandro Roncato. 2002. Efficient Parallel Graph Algorithms for

Coarse-Grained Multicomputers and BSP. Algorithmica 33, 2 (2002),
183–200. https://doi.org/10.1007/s00453-001-0109-4

[9] Paul Erdös and Alfréd Rényi. 1959. On random graphs, I. Publicationes
Mathematicae (Debrecen) 6 (1959), 290–297.

[10] L.R. Ford and Delbert R. Fulkerson. 1962. Flows in networks. Vol. 1962.
Princeton Princeton University Press.

[11] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-

machandran. 2012. Cache-Oblivious Algorithms. ACM Trans. Algo-
rithms 8, 1 (2012), 4:1–4:22. https://doi.org/10.1145/2071379.2071383

[12] Hillel Gazit. 1986. An Optimal Randomized Parallel Algorithm for

Finding Connected Components in a Graph. In 27th Annual Symposium
on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986.
IEEE Computer Society, 492–501. https://doi.org/10.1109/SFCS.1986.9

[13] Barbara Geissmann and Lukas Gianinazzi. 2017. Cache Oblivious
Minimum Cut. Springer International Publishing, Cham, 285–296.

https://doi.org/10.1007/978-3-319-57586-5_24
[14] Steve Goddard, Subodh Kumar, and Jan F. Prins. 1994. Connected com-

ponents algorithms for mesh-connected parallel computers. In Parallel
Algorithms, Proceedings of a DIMACS Workshop, Brunswick, New Jersey,
USA, October 17-18, 1994 (DIMACS Series in Discrete Mathematics and
Theoretical Computer Science), Sandeep Nautam Bhatt (Ed.), Vol. 30.

DIMACS/AMS, 43–58. http://dimacs.rutgers.edu/Volumes/Vol30.html
[15] Douglas Gregor and Andrew Lumsdaine. 2005. The parallel BGL: A

generic library for distributed graph computations. Parallel Object-
Oriented Scientific Computing (POOSC) 2 (2005), 1–18.

[16] Shay Halperin and Uri Zwick. 1996. Optimal randomized EREWPRAM

Algorithms for Finding Spanning Forests and for other Basic Graph

Connectivity Problems. In Proceedings of the Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta,
Georgia. 438–447. http://dl.acm.org/citation.cfm?id=313852.314099

[17] Jianxiu Hao and James B. Orlin. 1992. A faster algorithm for finding the

minimum cut in a graph. In Proceedings of the third annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied

Mathematics, 165–174.

[18] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of

Parallel Computing Systems. IEEE/ACM International Conference

on High Performance Computing, Networking, Storage and Analysis

(SC15).

[19] Torsten Hoefler, William Gropp, Rajeev Thakur, and Jesper Larsson

Träff. 2010. Toward Performance Models of MPI Implementations

for Understanding Application Scaling Issues. In Recent Advances in
the Message Passing Interface - 17th European MPI Users’ Group Meet-
ing, EuroMPI 2010, Stuttgart, Germany, September 12-15, 2010. Proceed-
ings (Lecture Notes in Computer Science), Rainer Keller, Edgar Gabriel,
Michael M. Resch, and Jack Dongarra (Eds.), Vol. 6305. Springer, 21–30.

https://doi.org/10.1007/978-3-642-15646-5_3
[20] Mark Hoemmen. 2010. Communication-avoiding Krylov Subspace Meth-

ods. Ph.D. Dissertation. Berkeley, CA, USA. Advisor(s) Demmel, James

W. AAI3413388.

[21] Keechul Jung, Kwang In Kim, and Anil K. Jain. 2004. Text information

extraction in images and video: a survey. Pattern Recognition 37, 5

(2004), 977 – 997. https://doi.org/10.1016/j.patcog.2003.10.012
[22] David R. Karger. 2000. Minimum cuts in near-linear time. J. ACM 47,

1 (2000), 46–76. https://doi.org/10.1145/331605.331608
[23] David R. Karger. 2001. A randomized fully polynomial time approxi-

mation scheme for the all-terminal network reliability problem. SIAM
review 43, 3 (2001), 499–522.

[24] David R. Karger, Philip N. Klein, and Robert Endre Tarjan. 1995. A

Randomized Linear-Time Algorithm to Find Minimum Spanning Trees.

J. ACM 42, 2 (1995), 321–328. https://doi.org/10.1145/201019.201022
[25] David R. Karger and Clifford Stein. 1996. A new approach to the

minimum cut problem. Journal of the ACM (JACM) 43, 4 (1996), 601–
640.

[26] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. 2008.

Technology-driven, highly-scalable dragonfly topology. In ACM
SIGARCH Computer Architecture News, Vol. 36. IEEE Computer So-

ciety, 77–88.

[27] Jean-Yves Le Boudec. 2010. Performance evaluation of computer and
communication systems. EPFL Press.

[28] Andrew Lumsdaine, Douglas P. Gregor, Bruce Hendrickson, and

Jonathan W. Berry. 2007. Challenges in Parallel Graph Processing.

Parallel Processing Letters 17, 1 (2007), 5–20. https://doi.org/10.1142/
S0129626407002843

[29] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. Computing edge-

connectivity in multigraphs and capacitated graphs. SIAM Journal on
Discrete Mathematics 5, 1 (1992), 54–66.

[30] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A light-

weight infrastructure for graph analytics. In ACM SIGOPS 24th Sympo-
sium on Operating Systems Principles, SOSP ’13, Farmington, PA, USA,
November 3-6, 2013, Michael Kaminsky and Mike Dahlin (Eds.). ACM,

456–471. https://doi.org/10.1145/2517349.2522739
[31] Simone F. Oliveira, Karl Fürlinger, and Dieter Kranzlmüller. 2012.

Trends in Computation, Communication and Storage and the Conse-

quences for Data-intensive Science. In 14th IEEE International Confer-
ence on High Performance Computing and Communication & 9th IEEE
International Conference on Embedded Software and Systems, HPCC-
ICESS 2012. 572–579. https://doi.org/10.1109/HPCC.2012.83

[32] Víctor Osma-Ruiz, Juan I. Godino-Llorente, Nicolás Sáenz-Lechón,

and Pedro Gómez-Vilda. 2007. An Improved Watershed Algorithm

Based on Efficient Computation of Shortest Paths. Pattern Recogn. 40, 3
(March 2007), 1078–1090. https://doi.org/10.1016/j.patcog.2006.06.025

[33] David A. Patterson. 2004. Latency lags bandwith. Commun. ACM 47,

10 (2004), 71–75.

231

http://dl.acm.org/citation.cfm?id=647908.740141
http://dl.acm.org/citation.cfm?id=647908.740141
https://doi.org/10.1145/277651.277662
https://doi.org/10.1145/277651.277662
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1007/s00224-007-2010-2
https://doi.org/10.1007/s00224-007-2010-2
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/325096.325150
https://doi.org/10.1145/325096.325150
https://doi.org/10.1007/s00453-001-0109-4
https://doi.org/10.1145/2071379.2071383
https://doi.org/10.1109/SFCS.1986.9
https://doi.org/10.1007/978-3-319-57586-5_24
http://dimacs.rutgers.edu/Volumes/Vol30.html
http://dl.acm.org/citation.cfm?id=313852.314099
https://doi.org/10.1007/978-3-642-15646-5_3
https://doi.org/10.1016/j.patcog.2003.10.012
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/201019.201022
https://doi.org/10.1142/S0129626407002843
https://doi.org/10.1142/S0129626407002843
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1109/HPCC.2012.83
https://doi.org/10.1016/j.patcog.2006.06.025

PPoPP ’18, February 24–28, 2018, Vienna, Austria L. Gianinazzi et al.

[34] Jelena Pjesivac-Grbovic, Thara Angskun, George Bosilca, Graham E.

Fagg, Edgar Gabriel, and Jack Dongarra. 2007. Performance analysis

of MPI collective operations. Cluster Computing 10, 2 (2007), 127–143.

https://doi.org/10.1007/s10586-007-0012-0
[35] Michael Oser Rabin. 1976. Probablistic Algorithms. In Algorithms and

Complexity, Joseph F. Traub (Ed.). Academic Press, 21–36.

[36] John H. Reif. 1993. Synthesis of Parallel Algorithms (1st ed.). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

[37] John H. Reif and Sandeep Sen. 1989. Polling: A New Randomized

Sampling Technique for Computational Geometry. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA. 394–404. https://doi.org/10.1145/73007.73045

[38] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011.

Parallel Random Numbers: As Easy As 1, 2, 3. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’11). ACM, New York, NY, USA, Article 16,

12 pages. https://doi.org/10.1145/2063384.2063405
[39] Satu Elisa Schaeffer. 2007. Survey: Graph Clustering. Comput. Sci. Rev.

1, 1 (Aug. 2007), 27–64. https://doi.org/10.1016/j.cosrev.2007.05.001
[40] Roded Sharan and Ron Shamir. 2000. CLICK: a clustering algorithm

with applications to gene expression analysis. In Proc Int Conf Intell
Syst Mol Biol, Vol. 8. 16.

[41] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. 2001. Boost
Graph Library: User Guide and Reference Manual, The. Pearson Educa-

tion.

[42] Francesco Silvestri. 2007. On the Limits of Cache-oblivious Matrix

Transposition. In Proceedings of the 2Nd International Conference on
Trustworthy Global Computing (TGC’06). Springer-Verlag, Berlin, Hei-
delberg, 233–243. http://dl.acm.org/citation.cfm?id=1776656.1776677

[43] Marc Snir. 1998. MPI–the Complete Reference: The MPI core. Vol. 1. MIT

press.

[44] Robert Solovay and Volker Strassen. 1977. A Fast Monte-Carlo Test

for Primality. SIAM J. Comput. 6, 1 (1977), 84–85. https://doi.org/10.
1137/0206006

[45] Mechthild Stoer and Frank Wagner. 1997. A simple min-cut algorithm.

J. ACM 44, 4 (1997), 585–591. https://doi.org/10.1145/263867.263872
[46] Jayaram K. Udupa and Venkatramana G. Ajjanagadde. 1990. Boundary

and object labelling in three-dimensional images. Computer Vision,
Graphics, and Image Processing 51, 3 (1990), 355–369. https://doi.org/
10.1016/0734-189X(90)90008-J

[47] Leslie G. Valiant. 1990. A bridging model for parallel computation.

Commun. ACM 33, 8 (1990), 103–111.

[48] Duncan J. Watts and Steven H Strogatz. 1998. Collective Dynamics of

small-world networks. Nature 393 (1998).
[49] Andrew D. Wilson. 2006. Robust Computer Vision-based Detection

of Pinching for One and Two-handed Gesture Input. In Proceedings
of the 19th Annual ACM Symposium on User Interface Software and
Technology (UIST ’06). ACM, New York, NY, USA, 255–258. https:
//doi.org/10.1145/1166253.1166292

[50] Yao Zhu and David F. Gleich. 2016. A parallel min-cut algorithm

using iteratively reweighted least squares targeting at problems with

floating-point edge weights. Parallel Comput. 59 (2016), 43–59. https:
//doi.org/10.1016/j.parco.2016.02.003

232

https://doi.org/10.1007/s10586-007-0012-0
https://doi.org/10.1145/73007.73045
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1016/j.cosrev.2007.05.001
http://dl.acm.org/citation.cfm?id=1776656.1776677
https://doi.org/10.1137/0206006
https://doi.org/10.1137/0206006
https://doi.org/10.1145/263867.263872
https://doi.org/10.1016/0734-189X(90)90008-J
https://doi.org/10.1016/0734-189X(90)90008-J
https://doi.org/10.1145/1166253.1166292
https://doi.org/10.1145/1166253.1166292
https://doi.org/10.1016/j.parco.2016.02.003
https://doi.org/10.1016/j.parco.2016.02.003

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Machine and Cost Model
	2.2 Randomness
	2.3 Graphs, Cuts, Connected Components
	2.4 Fundamental Techniques

	3 Sparsification and Graphs
	3.1 Communication-Avoiding Sparsification
	3.2 Connected Components
	3.3 Approximate Minimum Cuts

	4 Communication-Avoiding Mincuts
	4.1 Bulk Edge Contraction
	4.2 Eager Step
	4.3 Recursive Step
	4.4 Correctness and Bounds

	5 Experiments
	5.1 Connected Components
	5.2 Approximate Minimum Cuts
	5.3 Minimum Cuts

	6 Related Work
	7 Conclusion
	A Artifact description
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes

	References

