
High-Performance and Programmable Attentional
Graph Neural Networks with Global Tensor Formulations

Maciej Besta∗
ETH Zurich

Paweł Renc
AGH-UST

Sano Centre for Computational
Medicine

Robert Gerstenberger
ETH Zurich

Paolo Sylos Labini
Free University of Bozen-Bolzano

ETH Zurich

Alexandros Ziogas
ETH Zurich

Tiancheng Chen
ETH Zurich

Lukas Gianinazzi
ETH Zurich

Florian Scheidl
ETH Zurich

Kalman Szenes
ETH Zurich

Armon Carigiet
ETH Zurich

Patrick Iff
ETH Zurich

Grzegorz Kwasniewski
NextSilicon

Raghavendra Kanakagiri
University of Illinois at
Urbana-Champaign

Chio Ge
ETH Zurich

Sammy Jaeger
ETH Zurich

Jarosław Wąs
AGH-UST

Flavio Vella
University of Trento

Torsten Hoefler∗
ETH Zurich

ABSTRACT
Graph attention models (A-GNNs), a type of Graph Neural Net-
works (GNNs), have been shown to be more powerful than sim-
pler convolutional GNNs (C-GNNs). However, A-GNNs are more
complex to program and difficult to scale. To address this, we de-
velop a novel mathematical formulation, based on tensors that
group all the feature vectors, targeting both training and inference
of A-GNNs. The formulation enables straightforward adoption of
communication-minimizing routines, it fosters optimizations such
as vectorization, and it enables seamless integration with estab-
lished linear algebra DSLs or libraries such as GraphBLAS. Our
implementation uses a data redistribution scheme explicitly de-
veloped for sparse-dense tensor operations used heavily in GNNs,
and fusing optimizations that further minimize memory usage
and communication cost. We ensure theoretical asymptotic reduc-
tions in communicated data compared to the established message-
passing GNN paradigm. Finally, we provide excellent scalability
and speedups of even 4–5x over modern libraries such as Deep
Graph Library.

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00
https://doi.org/10.1145/3581784.3607067

CCS Concepts
• Computing methodologies→Machine learning; • Theory
of computation→ Data structures and algorithms for data man-
agement; • Computer systems organization→ Distributed ar-
chitectures.

Keywords
Graph Attention Models, Graph Neural Networks, Sparse-Dense
Tensor Operations

ACM Reference Format:
Maciej Besta, Paweł Renc, Robert Gerstenberger, Paolo Sylos Labini, Alexan-
dros Ziogas, Tiancheng Chen, Lukas Gianinazzi, Florian Scheidl, Kalman
Szenes, Armon Carigiet, Patrick Iff, Grzegorz Kwasniewski, Raghavendra
Kanakagiri, Chio Ge, Sammy Jaeger, Jarosław Wąs, Flavio Vella, Torsten
Hoefler. 2023. High-Performance and Programmable Attentional Graph
Neural Networks with Global Tensor Formulations. In The International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’23), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3581784.3607067

Website:
http://spcl.inf.ethz.ch/Research/Parallel_Programming/ScalableAGNNs

1 INTRODUCTION
Graph neural networks (GNNs) have become an established part
of the machine learning (ML) landscape [22, 87]. GNNs are used to
conduct ML tasks over interconnected data, such as nodes, links,
or whole graphs. They are used in social sciences, bioinformatics,
chemistry, medicine, cybersecurity, linguistics, transportation, and
others [7, 9, 15, 21, 22, 25, 35, 36, 39, 44, 87, 97, 100].

1

https://doi.org/10.1145/3581784.3607067
https://doi.org/10.1145/3581784.3607067
http://spcl.inf.ethz.ch/Research/Parallel_Programming/ScalableAGNNs
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581784.3607067&domain=pdf&date_stamp=2023-11-11

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

The initial successful Graph Convolution Network (GCN) [49]
model belongs to a class of Convolutional GNNs (C-GNNs) [14], with
other notable C-GNN examples being Graph Isomorphism Network
(GIN) [88], ChebNet [27], or Simple Graph Convolution (SGC) [85].
While C-GNNs can be used to solve many graph ML tasks, recent
results in the graph ML domain illustrate that models from the class
of Attentional GNNs (A-GNNs) are more powerful both empirically
and theoretically than C-GNNs. An example A-GNN model is the
seminal Graph Attention Network (GAT) [78]. One of the recent A-
GNN success stories is AlphaFold, a model based on graph attention,
which enabled a major breakthrough in the protein folding predic-
tion problem [45]. Other example notable use cases include learning
interactions between cells [61], predicting functional effects of gene
alterations [93], solving various combinatorial problems [20], or
predicting protein-protein interactions [33].

Despite their predictive power, GNN computations do require
much larger scales. First, the graphs considered so far in GNNs
are nowhere near the sizes used in many real scenarios. While
recent efforts in graph ML have illustrated how to process parts of
the Microsoft Academic Knowledge Graph (MAKG) [40] with ≈1.5
undirected billion edges, this graph is still tiny compared to Web
Data Commons (a web crawl obtained a decade ago, with 128 billion
links), the Facebook social graph (1 trillion edges already back in
2015 [24]), or the Sogou webgraph (12 trillion links in 2018 [57]).
Second, the models used are miniscule compared to their analogs
used in other domains such as neural language models (NLPs) [16].

In parallel and distributed computations, data communication is
the primary performance bottleneck [12, 51–53, 70, 101]. To alle-
viate this, many powerful communication-minimizing tensor com-
putations such as 2.5D matrix multiplications have been proposed.
These techniques have recently been applied to the GCNmodel [75],
reducing communication in GCN training and inference pipelines.
Importantly, this was possible because a single GNN layer in the
GCN model can be straightforwardly expressed as 𝑅𝑒𝐿𝑈 (AHW),
where A is the graph adjacency matrix, H is a vertex feature ma-
trix, and W is a parameter matrix. Such a formulation is called
global (GL) [8] because one explicitly uses matrices grouping all
feature vectors. The GCN model – like all other C-GNNs – also
has a so-called local (LC) formulation, in which one specifies trans-
formations of feature vectors of individual vertices. For the GCN
model, the LC formulation to obtain the feature vector h𝑣 for a ver-
tex 𝑣 is h𝑣 = 𝑅𝑒𝐿𝑈

(
W ·

(∑
𝑢∈𝑁 (𝑣)

(
1/
√
𝑑𝑣𝑑𝑢

)
h𝑢

))
, where1 𝑁 (𝑣)

is 𝑣 ’s neighborhood together with 𝑣 (i.e., 𝑁 (𝑣) = 𝑁 (𝑣) ∪ {𝑣}), and
𝑑𝑣 is the degree of a vertex 𝑣 . While LC formulations are widely
used because they are simple to formulate, GL formulations sim-
plify harnessing communication-minimizing routines from tensor
computations, and come with higher potential for vectorization,
because all vertex feature vectors and neighborhoods are grouped
together.

Unfortunately, global formulations cannot be easily applied to
many A-GNNs. This is because A-GNNs come with much more
complex mathematical formulations than C-GNNs. For example,
in GAT, the local formulation is h′

𝑣 = W · ∑
𝑢∈𝑁 (𝑣) 𝜓𝑣,𝑢 , where

1We follow a convention used in the GNN literature, where an individual feature vector h𝑣 is a
column vector (the weight matrix W multiplies it from the left side: Wh𝑣), but the feature matrix H
consists of row feature vectors (the weight matrix W multiplies it from the right side: HW)

𝜓𝑣,𝑢 =
exp

(
𝜎

(
a𝑇 ·

[
Wh𝑣

Wh𝑢
]))

∑
𝑦∈𝑁 (𝑣) exp

(
𝜎

(
a𝑇 ·

[
Wh𝑣

Wh𝑦

])) h𝑢 . Here, a is a parameter vec-

tor and
 denotes vector concatenation. The corresponding global

formulation has so far been unknown. On top of that, the above
expression only defines a single GNN layer of the forward propa-
gation pass (or of the inference). To fully describe a GNN model,
one would also need a GL formulation of backward propagation.

To address this, we develop novel global formulations for A-
GNNs, for both training and inference (contribution #1). We
cover all parts of a GNN pipeline, including edge message func-
tions, arbitrary vertex aggregations (expressed with novel semir-
ings), and normalizations (including softmax). Second, we illustrate
the efficient design and implementation of our formulations using
communication-minimizing sparse-dense tensor algebra kernels
combined with performance-centric optimizations such as kernel
fusion (contribution #2). While we offer a custom implementation,
our general formulations enable seamless harnessing of any existing
tensor library such as Combinatorial BLAS [18] or CTF [71].

We conduct a theoretical communication-cost analysis, show-
ing that our global GNN formulations are fundamentally more
efficient than the established non-global ones (contribution #3)
Finally, the empirical evaluation illustrates the superiority of global
tensor formulations, achieving significant speedups (4–5×) over
state-of-the-art baselines such as Deep Graph Library (DGL) [83]
(contribution #4). Both our formulations and design optimizations
are reusable to GNN models beyond those considered in this work.

Our work covers both inference and training. In GNN training,
there are two approaches, mini-batch and full-batch training. The
former has been a subject of intense studies [8, 56, 58, 59, 80, 92, 98],
but it suffers from information loss caused by sampling, and ulti-
mately slower convergence [43]. Simultaneously, full-batch training
has been shown to alleviate the convergence speed problems while
being competitive in performance with mini-batch training [43, 75].
In this work, we focus on full-batch training. Our work significantly
extends the previous schemes by Tripathy et al. [75] – which in-
troduced communication-minimizing routines for the simple GCN
model – into the more powerful but also more complex A-GNNs.

2 GRAPH NEURAL NETWORKS
Most GNN models are composed of 𝐿 layers. Each such layer con-
ducts two fundamental operations, aggregation and update, on the
feature vectors of vertices and possibly of edges. Feature vectors
initially contain information about an ML task at hand, aggregation
combines the features of the neighbors of a vertex with that vertex’
features (e.g., by using summation), and update combines the ag-
gregation outcomes with the feature vector from the previous layer.
This is usually followed by a non-linear activation (e.g., ReLU) and
normalization over features. Feature vectors in intermediate layers
are often referred to as hidden vectors. The last GNN layer outputs
feature vectors used for the downstream ML tasks.

2.1 General Notation
The input graph𝐺 is modeled as a tuple (𝑉 , 𝐸);𝑉 is a set of vertices
and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges; |𝑉 | = 𝑛 and |𝐸 | =𝑚. 𝑁 (𝑖) denotes
the set of vertices adjacent to vertex (node) 𝑖 , 𝑑𝑖 is 𝑖’s degree, and
𝑑 is the maximum degree in 𝐺 . The adjacency matrix (AM) of a
graph is A ∈ {0, 1}𝑛×𝑛 . A determines the connectivity of vertices:

2

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

Symbol Description

, Dense vectors, dimensions: 𝑘 × 1, 1 × 𝑘 . They usually contain model
parameters (in addition to the parameter matrix W), e.g., in GAT.

, Dense vectors, dimensions: 𝑛 × 1, 1 × 𝑛. They implement
transformations, such as replication, or store norms of feature vectors.

Dense matrices, dimensions: 𝑘 × 𝑘 . They keep model parameters.

, Dense matrices, dimensions: 𝑛 × 𝑘 , 𝑘 × 𝑛. They are used primarily
to maintain features or gradients for each vertex.

Dense matrix, dimensions: 𝑛 × 𝑛. It is used when obtaining attention
scores for each edge. The gray color indicates that this matrix is
always virtual, i.e., we never instantiate it explicitly, and it is instead
computed in parts, according to a specified schedule.
Sparse matrix, dimensions: 𝑛 × 𝑛. It stores the graph structure
(the adjacency matrix), or attention scores for each edge.

Color code:

, ,

,

,

,

Blue indicates vectors or matrices that contain ones only. They
enable expressing various operations (e.g., row summation or
replication) as tensor algebra kernels, fostering optimizations and
integration with tensor libraries such as GraphBLAS [46] or CTF [71].
Green indicates features (usually with tall dense matrices and vectors).
Violet indicates weights (usually with square dense matrices).
Red indicates gradients (usually with tall/square dense matrices).
Gray indicates a virtual matrix (see above).
Black indicates none of the above or no need for using a color code.

Table 1: Important matrix and vector objects used in this work.

A(𝑖, 𝑗) = 1 ⇔ (𝑖, 𝑗) ∈ 𝐸. In the following, to simplify expressions,
we use a symbol A to also denote the adjacency matrix after any
form of normalization. Note that we denote sparse tensors such as
the adjacency matrix with calligraphic letters.

h𝑖 ∈ R𝑘 denotes the hidden feature vector of a vertex 𝑖 . These
vectors can be grouped in a matrix H ∈ R𝑛×𝑘 . 𝑘 is the dimensional-
ity of feature vectors; 𝑙 indicates the 𝑙-th GNN layer (i.e., h𝑙

𝑖
). Note

that while 𝑘 may be different in different GNN layers, it is always
much smaller than 𝑛. For clarity of equations and without the loss
of generality, we assume it to be the same across GNN layers.

2.2 Local Formulations of GNN Models
In a local formulation, the feature vector of each neighbor of a
vertex 𝑖 is first transformedwith a function𝜓 . Next, for each vertex 𝑖 ,
the resulting feature vectors of 𝑖’s neighbors are aggregated with a
binary function

⊕
(e.g., a sum). Third, one uses another function

𝜑 to process the outcome of
⊕

. 𝜑 is often implemented as a linear
projection or MLP, followed by a non-linearity. The outcome of 𝜑
becomes the feature vector h𝑖 in the next GNN layer. We obtain
h𝑙+1
𝑖

= 𝜑

(
h𝑙
𝑖
,
⊕

𝑗 ∈𝑁 (𝑖) 𝜓
(
h𝑙
𝑖
, h𝑙

𝑗

))
. Importantly, depending on the

details of𝜓 , one can distinguish several classes of GNN models [14].
First, in Convolutional GNNs (C-GNNs),𝜓 outputs a fixed scalar
coefficient that can be preprocessed. Second, inAttentional GNNs
(A-GNNs),𝜓 is a learnable function that returns a scalar coefficient.

We illustrate detailed local formulations of selected GNN models
in the technical report; these are all known formulations published
in the GNN literature, and grouped in a recent analysis [8].

3 TENSOR ALGEBRA BUILDING BLOCKS
First, we picture the used tensors with small figures to indicate
their shapes, densities, and dimensions; see Table 1 for a list.

Second, we identify and list commonly occurring tensor algebra
expressions in Table 2; we use them heavily in the formulations in
the following sections, with this table serving as a reference point.
On one hand, exposing these expressions enables simplifying and
shortening tensor formulations of A-GNNs. On the other hand, it

facilitates compute efficiency. This is because many of these expres-
sions occur more than once in a single GNN layer of a given model.
Thus, each such identified common expression has to be computed
only once when processing that layer.

We pay special attention to express each GNN model solely with
tensor kernels. To achieve this, we use expressions such as replica-
tion of vectors (rep) or summation of matrix rows (sum). Such an
approach facilitates optimizations such as vectorization and it fos-
ters programmability: one can seamlessly use our formulations with
established tensor libraries and DSLs, for example Combinatorial
BLAS [4, 18], GraphMat [72], GraphBLAST [91], or CTF [71].

We also list common tensor algebra kernels such as sparse–dense
matrix product (SpMM) or sampled dense–dense matrix product
(SDDMM), see the bottom part of Table 2. To facilitate performance
optimizations, we also identify two new kernels that occur com-
monly in GNNs: SpMMM (sparse matrix–dense matrix–dense ma-
trix product) and MSpMM (dense matrix–sparse matrix–dense ma-
trix product). They form compute patterns in forward and backward
passes, respectively. Then, when constructing the GL formulations
of A-GNNs, we identify the occurrences of these kernels (cf. Fig. 1).
This further fosters achieving high performance and programma-
bility because one can simply plug in tuned implementations of
these established kernels (e.g., coming from the above-mentioned
libraries) instead of developing their own code.

We now proceed to develop GL formulations for A-GNNs.

Description Sparsity/density

X+++ =

X + X𝑇

⋆ Add a matrix X to its transpose; the calligraphic
font indicates that X is sparse in all used models.

+

X××× = XX𝑇 ⋆Multiply a tall matrix X by its transpose. =

H′ = HW,
a′ = Wa

ProjectionMultiply a feature matrix H or
a vector a with a parameter matrix W, usually
a also contains model parameters.

= ,
=

rep𝑖 (x)
= x1𝑇

⋆ ReplicationMultiply a column vector x by a row
vector (with 𝑖 ones) in order to replicate x 𝑖 times
(x can have an arbitrary dimension, usually 𝑛 or 𝑘).
Transposition: (rep𝑖 (x))𝑇 ≡ rep𝑇

𝑖
(x)

= ,

=

sum(X)
= X1

⋆ SummationMultiply X by a column vector
of ones in order to obtain the sum of each row of X
(X is most often a dense matrix in R𝑛×𝑘 ,
or a sparse matrix in R𝑛×𝑛).
Transposition: (sum(X))𝑇 ≡ sum𝑇 (X) .

= ,

=

rs𝑖 (X) ⋆ Composition rs𝑖 (X) ≡ rep𝑖 (sum(X)) . It is
equivalent to a multiplication by a matrix of ones.
Transposition: (rs𝑖 (X))𝑇 ≡ rs𝑇

𝑖
(X) .

= ,

=

X ⊕ X ⋆ Arbitrary aggregation It is a sparse–dense matrix
product over arbitrary semirings. Details: Section 4.3.

⊕

sm(X) ⋆ Softmax normalization It can be used with any
matrices; in the used models, it is used for
𝑛 × 𝑛 sparse matrices. Details: Section 4.2.
sm(X) = exp(X) ⊘ rs𝑛 (exp(X)) .

= ⊘

⊘
()

SpMM Sparse matrix–dense matrix product.

SDDMM Sampled dense matrix–dense matrix product. ⊙
()

MM Dense matrix–dense matrix product. ,

SpMMM ⋆ Sparse matrix–dense matrix–dense matrix
product. It is a composition of SpMM and MM.

MSpMM ⋆ Dense matrix–sparse matrix–dense matrix
product. It is a composition of MM and SpMM.

Table 2: Important tensor algebra expressions (top part) and selected most
important compute kernels (bottom part) used throughout the paper. “⋆”
indicates a novel building block derived or identified in this work.

3

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

(2) Generic tensor formula�ons

SDDMM

(1) GNN computa�on

(3.1) Vanilla A�en�on (VA)

Forward pass (single step):

Backward pass (single step):
...

...

Inference

Training (forward pass)

Training (backward pass)

GNN layer ...

Preprocessing

Input

Features
(dense
matrix)

Graph
structure

(adjacency
matrix)

(3.2) Graph A�en�on Network (GAT)

SpMMM

SDDMM MM

features (next layer)

gradients (prev. layer)

A sparse n x n
tensor, with

a�en�on scores,
model specific

SDDMM SpMMM
SpMM

SDDMM

SpMMMSpMM

SDDMM

MM MM MM SpMM

SpMMMSpMM

Specific formula�ons for a model
require deriving expressions for:

(used in forward & backward pass)
(used in backward pass)

(3.3) A�en�on-based GNN (AGNN)

SDDMM

SpMM

(or: SpMM + MM)

MSpMM
(or: MM + SpMM)

(or: SpMM + MM) (or: MM + SpMM)

rep+sum rep rep+sum rep

rep rep

rep+sum

rep
MM

rep+sum SDDMMSpMMM
(or: SpMM + MM)

MM

SDDMM SDDMM SDDMM MSpMMSDDMM (or: MM + SpMM)

rep
MM

GNN layer GNN layer

GNN layer GNN layer GNN layer

GNN layer GNN layer GNN layer

loss

features (current layer)
weights

(current layer)

➜ Tensor icons & color code: see Table 1, Sec�on 3
➜ Mathema�cal expressions & kernels: Table 2, Sec�on 3

gradients (current layer)

Le
ge

n
d ➜ More on forward pass: Sec�on 4

➜ More on backward pass: Sec�on 5
➜ More on So�max: Figure 3, Sec�on 4.2

where

A dense n x k tensor,
model specific

➜ No layer symbol at a tensor indicates the current layer "l"

Figure 1: Global tensor formulations of GNN models. “⋆” indicates a new formulation provided in this work. We present (1) the general overview of a GNN pipeline, (2) tensor
formulations for a general model-agnostic forward and backward GNN layer, and (3) model-specific tensor formulations for VA, AGNN, and GAT. For each model, we illustrate its
tensor formulations, the associated tensor compute patterns (cf. Table 1), and we identify example decompositions of these patterns into individual compute kernels (cf. the bottom
part of Table 2) and other tensor building blocks (cf. the top part of Table 2). More details on the symbols and tensor building blocks can be found in Section 3. The details of the
derivations of the backward pass propagation for each model are provided in the extended technical report, and summarized in Section 5.

4 TENSOR FORMULATIONS FOR INFERENCE
To facilitate linear algebraic reasoning about GNN computations,
we first develop a generic global formulation that is the equivalent
to the general established local formulation from Section 2.2. It
incorporates functions Ψ, ⊕, and Φ, and uses them to transform the
vertex feature vectors in iteration 𝑙 , grouped in a matrix H𝑙 , into
H𝑙+1, using the graph structure provided in A. Our formulation
fosters programmability – one can easily design an arbitrary A-
GNN model by appropriately specifying Ψ, ⊕, and Φ. We have

H𝑙+1 = 𝜎

(
Z𝑙

)
, Z𝑙 = (Φ ◦ ⊕)

(
Ψ

(
A,H𝑙

)
,H𝑙

)
(1)

A, together with H𝑙 , are first transformed by Ψ, which is the
equivalent of𝜓 in the local formulation. As such, it computes atten-
tion scores for edges. The output of Ψ, together with H𝑙 , is further
transformed by a composition of functions Φ and ⊕. We use the
composition to underline the fact that, depending on the model, the
user may want to apply ⊕ and Φ in a different order. This facilitates
performance optimizations. Observe that ⊕ and Φ do not necessar-
ily commute, and the model designer is responsible for using the
correct order. The resulting matrix is denoted with Z𝑙 , it is then
processed with a non-linearity 𝜎 . While in the local formulation
𝜎 is implicitly incorporated into 𝜑 , in the global formulation, we
decouple 𝜎 from Φ to enable the fact that Φ may be applied first,
before ⊕, to achieve higher performance.

4

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

We select representative A-GNNsmotivated by recent surveys [8]:
vanilla attention (VA) [77], AGNN [73], and GAT [78].

4.1 Global Formulations of Ψ
We show the global formulations of Ψ of the considered GNN mod-
els in Figure 1. We also show the sparsity/density of the associated
tensors (more details on the implementation are in Section 6). The
simplest one, the VA global formulation, is known (but only for
inference and forward pass – our backward pass formulation in
Section 5 is novel). To obtain Ψ, one computes the product of H with
its transpose H𝑇 , obtaining the dot product score for each potential
edge. This operation is followed by an element-wise Hadamard
product with A to filter the scores corresponding to each edge.

The formulations of AGNN and GAT are novel. AGNN’s global
formulation is similar to VA. The main difference is the normal-
ization of attention scores H×××, expressed algebraically using an
element-wise Hadamard division ⊘ by the outer product of vec-
tors n and n𝑇 . The 𝑖th element of n ∈ R𝑛×1 is the L2 norm of the
corresponding 𝑖th row feature vector (of vertex 𝑖) from H.

The GAT global formulation of Ψ is more involved (details
of derivation are pictured in Figure 2). The corresponding local
expression is in Section 1. First, for each edge (𝑖, 𝑗), one has to
express the concatenation of two vectors Wh𝑖 ∥Wh𝑗 associated
with vertices 𝑖 and 𝑗 , followed by a dot product with a shared vector
of parameters a. The concatenation is challenging to express with
global tensor operations. To facilitate it, one can split the dot product
into a sum of two independent dot products (Wh𝑖) · a + (Wh𝑗) · a,
where a = (a a). To express this operation algebraically for all
vertex pairs, we further multiply with vectors of ones (1 and 1𝑇),
as well as with H and H𝑇 , obtaining C (note that C is virtual, i.e.,
it is never explicitly instantiated in the actual implementation, as
indicated by the gray matrix in the corresponding sparsity/density
pattern). C is then transformed using element-wise non-linearity 𝜎 .
The outcome is multiplied element-wise with A to filter out the
scores of non-existing edges. Finally, the softmax normalization
across vertex neighborhoods is applied.

vertex u

'
''

mul�ply
by a shared

weight matrix

' ''

concatenate dot product
with a shared
weight vector

Local formula�on

Global formula�on

feature
vectors

vertex v

split the shared
weight vector

Final score for
an edge (u,v)

' ''
compute two
dot products

sum
par�al
sums

Adjacency matrix
grouping neighbors

of all ver�ces

Feature matrix
grouping all

feature vector

Shared
weight
matrix

Spli�ed weight vector Spli�ed
weight
vector

Par�al sum

Replica�on
to distribute

weights across
all edges

Replica�on to
distribute weights

across all edges

Shared
weight
matrix

Feature matrix
grouping all

feature vector

1

No vector split

2

With vector split

3

2

3

T

T

Figure 2: Deriving of the global GAT formulation from the local one (softmax
normalization omitted for clarity, it is plotted separately in Figure 3).

Tensor algebra expression

3
(1) element-wise
exponen�a�on of
non-zero elements

10 0 2
0 00 0

0 0
0

0
1

1
2

4

1
0

0 4
0
3 0

0 0 0
0 00 0

0 0
0

0
0

0
0

0

0 2

2

4

4

3

3

1
1
1
1
1

2

4

2 3

4 3

1 1 1 1 1

Example
0 0

0 00 0
0 0

0
0

0
0

0
0

0 2

2

4

4

3

3

2

4

2 3

4 3

Sparsity/density

(2) mul�plica�on
by a column

vector of ones

2

4

2 3

4 3

(3) mul�plica�on
by a row vector

of ones

...
0 0

0 00 0
0 0

0
0

0
0

0
0

0 2

2

4

4

3

3

(4) element-
-wise division
of edge scores

(normaliza�on)

2

4

2 3

4 3

...

Figure 3: Global formulation of softmax normalization.

4.2 Global Formulation of Graph Softmax
We derive the global formulation of softmax (sm(·)) applied over
each vertex neighborhood, see Figure 3 and Table 2. In step (1),
an element-wise exponentiation is applied to each non-zero of
X. Multiplication with a column vector of ones (step (2)) outputs
another column vector x ∈ R𝑛×1, with its 𝑖th cell containing the
sum of the cells in the 𝑖th row of exp(X). Multiplying x by a row
vector of ones 1𝑇 ∈ R1×𝑛 (step (3)) replicates x𝑛 times column-wise,
giving an 𝑛×𝑛 matrix, with each 𝑖th row containing 𝑛 copies of the
sum of values from the 𝑖th row of exp(X). This final matrix can be
used to normalize exp(X) with element-wise division ⊘ (step (4)).

Note that in the actual design & implementation (detailed in
Section 6), we never explicitly create such an 𝑛 × 𝑛 matrix, nor
fully replicate the vectors. However, incorporating the global for-
mulation for softmax (and other routines) fosters programmability
and performance optimizations, by enabling a seamless integration
with tensor libraries such as Combinatorial BLAS [4].

4.3 Global Formulation of ⊕
A standard sum aggregation, in which one sums the feature vectors
of the neighbors of each vertex, is conducted with a sparse-dense
product AH. Expressing many other aggregations (e.g., max, min,
average) can be enabled by incorporating generalized matrix
products over different semirings. A semiring is defined as
a tuple (𝑋, 𝑜𝑝1, 𝑜𝑝2, 𝑒𝑙1, 𝑒𝑙2). 𝑋 is a set equipped with two binary
operations𝑜𝑝1, 𝑜𝑝2 such that (𝑋, 𝑜𝑝1) and (𝑋, 𝑜𝑝2) are twomonoids
(a monoid is a set equipped with an associative binary operation).
(𝑋, 𝑜𝑝1) is a commutative monoid with an identity element 𝑒𝑙1, and
(𝑋, 𝑜𝑝2) is a monoid with an identity element 𝑒𝑙2.

Both the max and the min aggregation can be expressed us-
ing the tropical semiring variants [62, 63, 65, 95]. For the latter,
the semiring is (R ∪ {∞},min, +,∞, 0). Here, one has to also first
transform A by setting each off-diagonal zero entry as ∞. Then,
the corresponding aggregation AH ensures that a computed 𝑗-th
feature of vertex 𝑖 is equal to the minimum of the 𝑗-th features of
all 𝑖’s neighbors, i.e., ℎ (𝑙+1)

𝑖 𝑗
= min𝑣∈𝑁 (𝑖) ℎ𝑣 𝑗 . The former is similar,

i.e., the semiring is (R ∪ {−∞},max, +,−∞, 0).
The averaging aggregation is more challenging. The semiring

domain is R2 and each initial element 𝑥 of A is assigned a tuple
𝑎 = (𝑎1, 𝑎2) = (𝑥, 𝑥). Then, the two operations 𝑜𝑝1, 𝑜𝑝2 are defined
as follows: 𝑎 𝑜𝑝1 𝑏 = (𝑎1𝑏1, 𝑎1) and 𝑎 𝑜𝑝2 𝑏 = (𝑎1𝑎2+𝑏1𝑏2

𝑎2+𝑏2 , 𝑎2 +
𝑏2). Using a tuple enables keeping track of partial sums and of
their contributions to the final average. 𝑜𝑝2 merges two tuples by
computing the weighted average.

Note that the standard sum aggregation is actually also a matrix
product over the real semiring 𝑅 = (R, +, ·, 0, 1).

5

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

4.4 Global Formulation of Φ and Φ ◦ ⊕
In most GNN models, Φ is a linear projection, i.e., a multiplication
with a matrix containing model parameters W. As such, it can
be applied before or after ⊕; we indicate this with the function
composition symbol Φ ◦ ⊕. Our formulation gives the programmer
flexibility to decide on the composition order statically or on-the-fly.

In some models, for example GIN [88], Φ is an MLP. This cor-
responds to a series of multiplications with different parameter
matrices, interleaved with non-linearities.

Overall, nearly all A-GNNs have a formulation 𝜎 (ΨHW) where
Ψ ≡ Ψ(A,H) is described in Section 4.1. The corresponding sparsi-
ty/density pattern is = × × , see also Figure 1.

We note that C-GNNs have a similar general formulation of the
form 𝜎 (AHW). The difference is that instead of Ψ, one directly
uses the adjacency matrixA (potentially normalized). Thus, once Ψ
is computed, the same execution strategies can be applied to C-GNN
and A-GNN models, as their subsequent formulations are identical.

5 TENSOR FORMULATIONS FOR TRAINING
We first derive global formulations for backpropagation for consid-
ered A-GNN. We use lowercase roman letters (𝑖, 𝑗, 𝑘 ...) for vertex
indices and lowercase Greek letters (𝛼, 𝛽,𝛾) for feature indices.
5.1 General Backward Pass Derivation
For each model, the derivation consists of the following steps:
• Step 1: Obtain the derivative of Z𝑙 w.r.t. Z𝑙−1 (cf. Eq. (1)). This
enables establishing the error propagation between GNN layers.

• Step 2: Obtain the derivative of H𝑙 w.r.t. Z𝑙−1. We observe that
𝐻 𝑙
𝑗,𝛽

depends on 𝑍 𝑙
𝑖,𝛼

iff 𝑖 = 𝑗 and 𝛼 = 𝛽 , based on the forward

propagation pass equations.We have 𝜕𝐻 𝑙
𝑗,𝛽

/𝜕𝑍 𝑙−1
𝑖,𝛼

= 𝛿
𝑖,𝛼

𝑗,𝛽
𝜎 ′

(
𝑍 𝑙−1
𝑖,𝛼

)
where 𝛿 is the Kronecker symbol and it equals one iff 𝑖 = 𝑗 and
𝛼 = 𝛽 , and zero otherwise.

• Step 3: Obtain the derivative of the loss function L w.r.t. to Z𝑙 ,
i.e., 𝜕L/𝜕Z𝑙 , denoted with G𝑙 . It has the same dimensions as Z𝑙 .
Using the chain rule, we have:

𝐺𝑙−1
𝑖,𝛼 =

𝜕L
𝜕𝑍 𝑙−1

𝑖,𝛼

=
∑︁
𝑗,𝛽

𝜕L
𝜕𝑍 𝑙

𝑗,𝛽

𝜕𝑍 𝑙
𝑗,𝛽

𝜕𝑍 𝑙−1
𝑖,𝛼

=
∑︁
𝑗,𝛽

𝐺𝑙
𝑗,𝛽

𝜕𝑍 𝑙
𝑗,𝛽

𝜕𝑍 𝑙−1
𝑖,𝛼

(2)

• Step 4: Derive a recursive relationship between G𝑙 and G𝑙−1.
• Step 5: Find the derivative G𝑙 at the last layer 𝐿. Here, using the
chain rule, we have:

𝐺𝐿
𝑖,𝛼 =

𝜕L
𝜕𝑍𝐿

𝑖,𝛼

=
∑︁
𝑗,𝛽

𝜕L
𝜕𝐻𝐿

𝑗,𝛽

𝜕𝐻𝐿
𝑗,𝛽

𝜕𝑍𝐿
𝑖,𝛼

=
𝜕L
𝜕𝐻𝐿

𝑖,𝛼

𝜎′
(
𝑍𝐿
𝑖,𝛼

)
(3)

G𝐿 = ∇H𝐿 L ⊙ 𝜎′
(
Z𝐿

)
(4)

• Step 6: Find the derivative of L w.r.t. the weights W𝑙 ; we denote
it with Y𝑙 = 𝜕L/𝜕W𝑙 . We have:

𝑌 𝑙
𝛼,𝛽

=
𝜕L

𝜕𝑊 𝑙
𝛼,𝛽

=
∑︁
𝑗,𝛾

𝜕L
𝜕𝑍 𝑙

𝑗,𝛾

𝜕𝑍 𝑙
𝑗,𝛾

𝜕𝑊 𝑙
𝛼,𝛽

=
∑︁
𝑗,𝛾

𝐺𝑙
𝑗,𝛾

𝜕𝑍 𝑙
𝑗,𝛾

𝜕𝑊 𝑙
𝛼,𝛽

(5)

After Step 6, one finds the update for the weights W𝑙 for the next
training iteration. The weights are updated in the direction of the
decreasing loss, using any learning rule, such as W𝑙 := W𝑙 − 𝛼Y𝑙 .

5.2 General Training Formulation
The general tensor algebra forward pass formulation is identical to
that of inference in Section 4. To obtain a general backward pass

formulation, we analyze each considered A-GNN model and we
distill the outcomes into a generic backward pass formulation:

G𝑙−1 = 𝜎′
(
Z𝑙−1

)
⊙ Γ𝑙 , (6)

Y𝑙 = H𝑙𝑇 Ψ
(
A𝑇 ,H𝑙

)
G𝑙 + G𝑙W𝑙𝑇 H𝑙𝑇 𝜕Ψ

𝜕W𝑙

Γ is a model-specific expression, we show and analyze it for the
considered A-GNNs in Figure 1. Moreover, as stated in Section 5.1,
G𝑙 = 𝜕L/𝜕Z𝑙 and Y𝑙 = 𝜕L/𝜕W𝑙 . The whole Eq. (7) is bootstrapped
at the last layer 𝐿 with G𝐿 = ∇H𝐿L ⊙ 𝜎 ′

(
Z𝐿

)
. Finally, Ψ and H

are the same as in the forward pass (cf. Eq. (1)), except for using
A𝑇 instead of A and H𝑇 instead of H. This reflects the fact that,
in the combinatorial interpretation, the backward pass is done on the
“reversed” graph, i.e., using the reverse edge directions (compared
to the forward pass). Note that, for undirected graphs (which form
the vast majority of datasets in GNN workloads [28, 41]), A = A𝑇 .
Please note that for VA and AGNN 𝜕Ψ

𝜕𝑊
is 0, so the second term of

Y𝑙 is zero as well.
We present the final global formulations of each model in Fig-

ure 1. It shows bothΨ and Γ, together with their associated compute
patterns and tensors, and identified tensor kernels. Due to space
constraints, we present derivations of the backward pass of AGNN
and GAT in the extended technical report, and now proceed with
the derivation for VA.

5.3 Vanilla Attention Backpropagation
We write the forward pass using the matrix components:

𝑍 𝑙
𝑗,𝛽

=
∑︁
𝑘,𝛾

𝐴𝑗,𝑘
©«
∑︁
Z

𝐻 𝑙
𝑗,Z

𝐻 𝑙
𝑘,Z

ª®¬𝐻 𝑙
𝑘,𝛾

𝑊 𝑙
𝛾,𝛽

(7)

To find the derivatives of Z𝑙 w.r.t. Z𝑙−1 (Step 1), we observe that
only the H𝑙 terms depend on Z𝑙−1. There are three such terms and
we thus use the derivative rule for the product of three functions:

𝜕𝑍 𝑙
𝑗,𝛽

𝜕𝑍 𝑙−1
𝑖,𝛼

=
∑︁
𝑘,𝛾

𝐴𝑗,𝑘
©«
∑︁
Z

𝜕𝐻 𝑙
𝑗,Z

𝜕𝑍 𝑙−1
𝑖,𝛼

𝐻 𝑙
𝑘,Z

ª®¬𝐻 𝑙
𝑘,𝛾

𝑊 𝑙
𝛾,𝛽

(8)

+
∑︁
𝑘,𝛾

𝐴𝑗,𝑘
©«
∑︁
Z

𝐻 𝑙
𝑗,Z

𝜕𝐻 𝑙
𝑘,Z

𝜕𝑍 𝑙−1
𝑖,𝛼

ª®¬𝐻 𝑙
𝑘,𝛾

𝑊 𝑙
𝛾,𝛽

+
∑︁
𝑘,𝛾

𝐴𝑗,𝑘
©«
∑︁
Z

𝐻 𝑙
𝑗,Z

𝐻 𝑙
𝑘,Z

ª®¬
𝜕𝐻 𝑙

𝑘,𝛾

𝜕𝑍 𝑙−1
𝑖,𝛼

𝑊 𝑙
𝛾,𝛽

Then, we plug in the equations from Step 2, obtaining
𝜕𝑍 𝑙

𝑗,𝛽

𝜕𝑍 𝑙−1
𝑖,𝛼

= 𝜎′
(
𝑍 𝑙−1
𝑖,𝛼

) (∑︁
𝑘,𝛾

𝐴𝑗,𝑘𝛿
𝑖
𝑗𝐻

𝑙
𝑘,𝛼

𝐻 𝑙
𝑘,𝛾

𝑊 𝑙
𝛾,𝛽

(9)

+
∑︁
𝛾

𝐴𝑗,𝑖𝐻
𝑙
𝑗,𝛼𝐻

𝑙
𝑖,𝛾𝑊

𝑙
𝛾,𝛽

+𝐴𝑗,𝑖
©«
∑︁
Z

𝐻 𝑙
𝑗,Z

𝐻 𝑙
𝑖,Z

ª®¬𝑊 𝑙
𝛼,𝛽

)
Using the above and Step 3, we have

𝐺𝑙−1
𝑖,𝛼 = 𝜎′

(
𝑍 𝑙−1
𝑖,𝛼

) ∑︁
𝛽,𝑘,𝛾

𝐺𝑙
𝑖,𝛽

𝐴𝑖,𝑘𝐻
𝑙
𝑘,𝛼

𝐻 𝑙
𝑘,𝛾

𝑊 𝑙
𝛾,𝛽

(10)

+ 𝜎′
(
𝑍 𝑙−1
𝑖,𝛼

) ∑︁
𝛽,𝑗,𝛾

𝐺𝑙
𝑗,𝛽

𝐴𝑗,𝑖𝐻
𝑙
𝑗,𝛼𝐻

𝑙
𝑖,𝛾𝑊

𝑙
𝛾,𝛽

+ 𝜎′
(
𝑍 𝑙−1
𝑖,𝛼

) ∑︁
𝛽,𝑗,Z

𝐺𝑙
𝑗,𝛽

𝐴𝑗,𝑖𝐻
𝑙
𝑗,Z

𝐻 𝑙
𝑖,Z
𝑊 𝑙

𝛼,𝛽

6

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

In the matrix formulation, it is (Steps 3-5):

G𝑙−1 = 𝜎′
(
Z𝑙−1

)
⊙

(
N𝑙
+++H𝑙 +

(
A𝑇 ⊙ H𝑙

×××
)

M𝑙
)

(11)

where, for simplicity and to eliminate redundant matrix operations,
we compute the following terms only once:

M𝑙 = G𝑙W𝑙𝑇 , N𝑙 = A ⊙
(
M𝑙H𝑙𝑇

)
. (12)

We then finally arrive at the formulation for Y𝑙 (Step 6):

Y𝑙 =
𝜕L
𝜕W𝑙

= H𝑙𝑇
(
A𝑇 ⊙ H𝑙

×××
)

G𝑙 (13)

6 DESIGN & IMPLEMENTATION
We overview our design in Figure 4. Developing a single GNNmodel
within our framework consists of several stages. We begin with
a local GNN model formulation and derive the global one using
the techniques and examples from Section 4 (if a global formula-
tion already exists, this stage is omitted). Second, we investigate
the sparsity of the associated tensors and decide which ones are
virtual, i.e., are never instantiated (Section 6.1). Afterward, we au-
tomatically optimize the communication volume of the model’s
global formulation. We achieve this by harnessing and extending
the combinatorial data access model operating on Simple Overlap
Access Programs (SOAP) [51]. SOAP’s outcome is a parametric
formulation that serves as a basis for an implementation.

6.1 Virtual Tensors for Space Optimization
Despite using distributed-memory clusters, some tensors could
still be too large to be stored explicitly. We mark them as virtual,
i.e., these tensors are never explicitly stored but rather computed
in small parts using a dynamic schedule. In the considered GNN
models, this happens when obtaining Ψ: when evaluating it naively,
one would end with a dense 𝑛 × 𝑛 matrix. As 𝑛 can be very large
(e.g., more than 109), keeping such a matrix is infeasible, even on
a system with thousands of compute nodes. Instead, it is stored
implicitly as an outer product of matrices with smaller dimensions.
In the next subsection, we describe how perform computations on
virtual tensors, without instantiating them.

6.2 Fusing Optimizations
We construct the forward and backward execution DAGs of the
models (Figure 5). For each execution, we traverse the DAG until we
find an edge

(
𝑣𝑖 , 𝑣 𝑗

)
whose output 𝑣 𝑗 is a virtual matrix. Then, we

continue to traverse the graph until we meet an edge (𝑣𝑘 , 𝑣𝑙) where

𝑣𝑙 is a sparse intermediate result. In other words, the (𝑣𝑘 , 𝑣𝑙) edge’s
operation involves a sparse matrix that samples the virtual interme-
diate results in the path. We proceed by fusing all the operations in
this path to generate an SDDMM-like kernel. We note that we may
fuse more operations than necessary to avoid instantiations, if that
will provide performance benefits.

The implementation of those operations is straightforward be-
cause the output almost always has the same sparsity pattern as
the adjacency matrix. This in turn allows us to effortlessly integrate
them into the distributed layer computations. The basic form of
the kernels iterates over the non-zero values of the sparse matrix
performing the sampling and computes the corresponding elements
of the virtual dense matrix.

For GPU execution specifically, we implement each fused opera-
tion as a CUDA kernel. We employ grid-stride loops for coalesced
memory and warp-level primitives to accelerate reductions.

6.3 Communication Optimizations
Our distribution strategy follows the state-of-the-art A-stationary
1.5D algorithm for SpMM [68]. We extend this approach so that the
same 1.5 distribution covers all the operations in a single forward or
backward executon layer. To achieve this, we apply a 2D distribution
of the adjacency matrix on a 2D 𝑃𝑥 × 𝑃𝑦 cartesian process grid.
On the other hand, the layer input 𝑯 𝑙 is distributed in 𝑃𝑦 blocks,
each replicated 𝑃𝑥 times, while the output 𝑯 𝑙+1 is distributed in 𝑃𝑥
blocks, each further split into 𝑃𝑦 partial sums. To link the output
of one layer with the input of the next one, we reduce the partial
sums and then redistribute them in 𝑃𝑦 blocks, also replicated 𝑃𝑥
times. All the other layer inputs and intermediate results follow
distributions that satisfy the above scheme. For example, the weight
matrices W and vectors a are replicated across all processes.

6.4 Implementation Details
We use Python and we harness some of its performance-oriented
packages: CuPy [66], NumPy [37], SciPy [79], and mpi4py [26].
The first three Python packages provide abstractions over basic
linear algebra kernels, and automatically link against optimized
implementations from Intel MKL for CPU and NVIDIA cuBLAS,
cuSPARSE, and CUTLASS for GPU. We write our own CUDA im-
plementation for tensor kernels and we integrate them into our
Python workflow using CuPy.

A formulation provided by a user,
e.g., a GNN model designer

A global formulation designed using
techniques from this work (Sections 3-5)

An optimization of the formulation,
aiming to reduce communication

Fusing different kernels, applying
communication minimizing schemes

Example formulation

Execution:
manual

Execution: SOAP framework

Example unoptimized schedule

Example optimized schedule

An implementation
of the model, potentially specifying
details of parallelism or distribution

Execution: Manual, or using
a library or a DSL (e.g., GraphBLAS,
GraphBLAST, Combinatorial BLAS,

GraphMat, Cyclops Tensor Framework)

Execution: Manual, based on the
suggestions proposed in this work

Code tuning,
e.g., enhancing
vectorizability

Execution: Manual

Blue color: [this work]

Grey color: existing work

A GNN model local formulation

A GNN model global formulation

Formulation optimization

Implementation optimizations

High-level implementation

Code tuning

Figure 4: The toolchain provided in this work.

7

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

+=

+=

+=

+=

+=

+=

SDDMM

SDDMM

SDDVV
(vec vec)

SDDMM

SDDMM

SDDVA
(vec + vec)

SDDVA
(vec + vec)

Advance sparsification:
Graph A�en�on Network (GAT)

A�en�on-based GNN (AGNN)Vanilla
A�en�on (VA)

Le
ge

n
d Solid arrow:

Dashed arrow:

Data flow

Fusing
Circle:
tensor

Red symbols: gradients &
backward pass

Black symbols: forward pass

Color code: see Table 1

Figure 5: The analysis of the forward and backward execution DAGs for considered A-GNNs, and fusing optimizations (dashed arrows) proposed in this work.

7 THEORETICAL ANALYSIS
We summarize a communication cost analysis of the global and
local formulations of GNNs in the Bulk-Synchronous Parallel (BSP)
model [76]. We only provide the most important insights and anal-
yses, all the details and proofs (including a full derivation of the
results for the local formulation) are in the technical report. We use
the BSP model, where – in each superstep – each of the 𝑝 processors
can send some data to the other processors, which receive the data
in the next superstep. The maximum amount of words sent by any
processor is the communication volume.

We show that, for computing one GNN layer of VA, AGNN and
GAT, the global formulation takes𝑂 (𝑛𝑘/√𝑝 +𝑘2) volume, whereas
the local view takes up to Ω(𝑛𝑘𝑑/𝑝 + 𝑘2) volume, where 𝑛, 𝑘, 𝑑, 𝑝
are – respectively – #vertices, #features, maximum degree, and
#processes. We also show that these bounds not only hold for the
forward pass, but also for the backward pass (which is much more
involved), as well as for inference. Hence, for the entire GNN train-
ing process, the global formulation is more communication-
efficient than the local formulation, for 𝑑 ∈ 𝜔 (√𝑝). This regime
holds – for example – for graphs with a heavy-tail degree distribu-
tion, which are omnipresent in modern workloads [13, 50, 54, 67].

7.1 Communication Cost of Global Formulation
The general idea in analyzing the global view is to slice the sparse
matrix A (and the resulting sparse matrix Ψ(A,H)) into 𝑝 blocks
of size 𝑛√

𝑝
× 𝑛√

𝑝
, which are each assigned to a processor. For this,

we give each processor a two-dimensional index (𝑖, 𝑗) indicating
which submatrix it stores. All communication is limited to sending
slices of tall feature matrices and small parameter matrices and
vectors. Moreover, we never materialize dense “virtual” matrices.
7.1.1 Computation of Φ and Φ ◦ ⊕.We first consider the feature
update operation 𝜎 (ΨHW), given that Ψ has already been calcu-
lated. Let H′ = HW and H′′ = ΨH′ be intermediary matrices. First,
we consider the product H′ = HW. We slice H row-wise into √

𝑝

blocks of equal size (𝑛/√𝑝) ×𝑘 , denoted as 𝐻0 · · ·𝐻√
𝑝−1. Then, we

can decompose this product into block operations𝐻 ′
𝑖
= 𝐻𝑖W, which

we execute locally on √
𝑝 processors. Therefore, we first broadcast

𝑊 to the first row of the processor grid denoted as 𝑃1,1 · · · 𝑃1,√𝑝 and

then distribute the blocks𝐻𝑖 to one of these processors each. Broad-
casting𝑊 takes 𝑂 (log𝑝) steps and 𝑂 (𝑘2) communication volume.
Distributing the blocks of H takes 𝑂 (1) steps and 𝑂 (𝑛𝑘/√𝑝) com-
munication volume, since each processor can just send𝐻𝑖 to the cor-
rect 𝑃1,𝑖 . Therefore, we have𝑂 (log 𝑝) supersteps and𝑂 (𝑛𝑘/√𝑝+𝑘2)
communication volume overall.

Next, we turn to the product H′′ = ΨH′. Recall that since we
already calculated H′ as described above, we can assume that it
is already distributed among √

𝑝 processors. As discussed before,
each processor 𝑃𝑖, 𝑗 on the grid stores the sparse submatrix Ψ𝑖, 𝑗 ,
which we do not want to move around. Therefore, it does not
matter if Ψ is sparse or dense for our communication analysis.
Next, note that we can rewrite our product into block operations
𝐻 ′′
𝑖

=
∑√

𝑝−1
𝑗=0 Ψ𝑖, 𝑗 × 𝐻 ′

𝑗
, where the blocks𝐻 ′′

𝑖
are of size (𝑛/√𝑝) ×𝑘 ,

such that we can operate on eachΨ𝑖, 𝑗 locally. Thus, we first replicate
each 𝐻 ′

𝑗
by broadcasting it along the 𝑗-th column of the processor

grid. Then, each processor 𝑃𝑖, 𝑗 can compute Ψ𝑖, 𝑗𝐻 ′
𝑗
locally. Finally,

we reduce (sum) the resulting blocks along each row to calculate
𝐻 ′′
𝑖
, which leaves us with H′′ distributed along √

𝑝 processors.
The broadcast of all blocks 𝐻 ′

𝑗
takes 𝑂 (log𝑝) steps and 𝑂 (𝑛𝑘/√𝑝)

communication volume, because we can broadcast along each col-
umn independently. Reducing along the rows incurs the same costs
which gives a total of 𝑂 (log𝑝) supersteps and 𝑂 (𝑛𝑘/√𝑝) commu-
nication volume. The non-linearity 𝜎 is element-wise, requiring
no additional communication. Hence, we conclude that the overall
communication volume for computing 𝜎 (ΨHW) is𝑂 (𝑛𝑘/√𝑝 +𝑘2).
7.1.2 Computation of Ψ, Y, Γ.We now summarize the analyses of
Ψ, Y, and Γ; the details are in the technical report. Overall, we slice
the computation of Ψ (𝑛 × 𝑛 matrix) into 𝑝 blocks of size 𝑛√

𝑝
× 𝑛√

𝑝
,

and compute one block on each processor to derive bounds. A and
H are sliced as in Section 7.1.1. W is fully replicated. This gives us
a volume of 𝑂 (𝑛𝑘/√𝑝 + 𝑘2). Second, the weight update operation
H𝑇 Ψ′ (𝜎 ′(Z) ⊙ Γ) only involves multiplications that are at most as
expensive as the ones during the calculation of Ψ. Thus, it also takes
𝑂 (𝑛𝑘/√𝑝+𝑘2) communication volume to computeY, assuming that
Γ has already been computed. Finally, we verify that calculating Γ,
in each model, also has an 𝑂 (𝑛𝑘/√𝑝 + 𝑘2) communication volume.

8

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

GAT - This Work GAT - DistDGL GAT - DGL VA - This Work VA - DistDGL VA - DGL AGNN - This Work AGNN - DistDGL AGNN - DGL

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(a) 𝑛 = 131k,𝑚 = 172M, 𝜌 = 1%, 𝑘 = 16

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(b) 𝑛 = 262k,𝑚 = 687M, 𝜌 = 1%, 𝑘 = 16

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(c) 𝑛 = 1M,𝑚 = 110M, 𝜌 = 0.01%, 𝑘 = 16

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(d) 𝑛 = 2.1M,𝑚 = 440M, 𝜌 = 0.01%, 𝑘 = 16

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(e) 𝑛 = 131k,𝑚 = 172M, 𝜌 = 1%, 𝑘 = 128

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(f) 𝑛 = 262k,𝑚 = 687M, 𝜌 = 1%, 𝑘 = 128

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(g) 𝑛 = 1M,𝑚 = 110M, 𝜌 = 0.01%, 𝑘 = 128

1 4 16 64 256
Compute Nodes

10 2

10 1

100

101

102

103

R
u
n
ti

m
e
 [

s]

(h)𝑛 = 2.1M,𝑚 = 440M, 𝜌 = 0.01%, 𝑘 = 128
Figure 6: Strong scaling analysis of GNN training (scaling number of processes for fixed datasets). The used graphs are generated according to the heavy-tail Kronecker model.
We vary the density of the adjacency matrix, defined as 𝜌 =𝑚/𝑛2 , from 1% to 0.01%. The number of non-zeroes𝑚 ranges from ≈171 to ≈687 million. Missing data points indicate
that a given baseline could not scale to a given node count, or that it did not fit in combined node memories.

7.2 Inference vs. Training
While we only need Ψ to do the inference pass, training also needs
Γ, which requires many operations (cf. Figure 1). On top of that,
Ψ itself is required for backpropagation, making training strictly
more computationally expensive than inference. Nevertheless, we
illustrate that, asymptotically, the communication needed for training
is the same as for inference in the global formulation.

7.3 Analysis for Erdős–Rényi Graphs
We also make our study more concrete and assume the Erdős–Rényi
graph model 𝐺𝑛,𝑞 with the random uniform degree distribution.
Here, any edge exists with a constant probability 𝑞 (independently
of other edges) [30]. We show that the communication volume for
the local formulation is in 𝑂 (𝑛2𝑘𝑞/𝑝 + log𝑛) with high probability.
Thus, for denser graphs (𝑞 >

√
𝑝/𝑛), the global formulation is

expected to be more efficient, while for sparser graphs we expect
the difference between local and global formulation to decrease.

8 EVALUATION
We now illustrate performance advantages stemming from the
proposed formulations and their underlying implementation.

8.1 Evaluation Setup
Comparison BaselinesWe analyzed the landscape of GNN frame-
works to find the appropriate baselines. We discover that nearly
all the systems for full-batch training target simple C-GNN mod-
els, which we do not focus on (e.g., CAGNET [75], PipeGCN [81],
DistGNN [64], MG-GCN [5], DeepGalois [38], ROC [43], or Flex-
Graph [82]). Dorylus is not compatible with our environment as
it works with serverless cloud settings [74]. Finally, we identified
dgNN, a very recent full-batch system that supports GAT; however,
it is only single-node [94]. We also compare our work to distributed

DGL (DistDGL) [83], a high-performance distributed-memory GNN
library (to maximize fairness, for any scaling experiments that start
with a single node, we additionally use the shared-memory DGL
version [83]). While DistDGL uses mini-batch training, it serves as
a valid comparison target because – as we will illustrate – our full-
batch execution nearly always outperforms DistDGL’s mini-batch
execution, which processesmany orders or magnitude fewer vertices.
Here, we use the largest possible mini-batch size – 16k vertices –
that did not cause DistDGL to crash due to OOM errors.
Parameters We vary the hidden feature dimension 𝑘 to 16, 32, or
128, and experiment with #GNN layers 𝐿 ∈ {2, ..., 10}. We measure
the runtime of a complete full-batch forward pass with 𝐿 layers
(for inference) or a forward pass followed by backward pass, each
with 𝐿 layers (for training). All operations are executed in single-
precision floating point arithmetic. We follow recommendations by
the established GNN benchmarks [28, 41].
ArchitecturesWe run our experiments on the Piz Daint supercom-
puter at the CSCS supercomputing center. Each (Cray XC50) node
has an Intel Xeon E5-2690 v3 @ 2.60GHz (12 cores, 64GB RAM)
and an NVIDIA Tesla P100 with 16GB of memory. We note that our
work and DGL utilize the GPU in all benchmarks. The interconnect
architecture is Cray Aries [31], and the topology is Dragonfly [48].
Methodology For each benchmark, we measure the runtime of at
least ten executions, and we plot the median and the 95% confidence
interval using bootstrapping [29].
Datasets The used graphs are generated according to the Kronecker
model, which ensures high load imbalance. We vary the density of
the adjacency matrix, defined as 𝜌 =𝑚/𝑛2, from 1% to 0.01%. The
number of non-zeroes𝑚 ranges from ≈171 to ≈686M. We also use
the MS Academic Knowledge Graph (MAKG), a standard real-world
dataset for large-scale GNNs, with 111M vertices and 3.2B edges.

9

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

16 64 256 1024
Compute Nodes

100

101

102

103

R
u
n
ti

m
e
 [

s]

GAT - Training

GAT - Inference

VA - Training

VA - Inference

AGNN - Training

AGNN - Inference

(a)MAKG, 𝑘 = 16

16 64 256 1024
Compute Nodes

100

101

102

103

R
u
n
ti

m
e
 [

s]
GAT - Training

GAT - Inference

VA - Training

VA - Inference

AGNN - Training

AGNN - Inference

For k=128, all the models
require 1,024 compute nodes
(data points for k=128 are
marked with gray background)

(b)MAKG, 𝑘 = 64, 128

20 21 22 23 24 25 26 27 28 29

Compute Nodes

10 2

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

GAT - This Work

GAT - DistDGL

VA - This Work

VA - DistDGL

CGNN - This Work

CGNN - DistDGL

(c) Rand, 𝜌 = 1%, 𝑘 = 128

20 21 22 23 24 25 26 27 28 29

Compute Nodes

10 2

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

GAT - This Work

GAT - DistDGL

VA - This Work

VA - DistDGL

CGNN - This Work

CGNN - DistDGL

(d) Rand, 𝜌 = 0.1%, 𝑘 = 128

20 21 22 23 24 25 26 27 28 29

Compute Nodes

10 2

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

GAT - This Work

GAT - DistDGL

VA - This Work

VA - DistDGL

CGNN - This Work

CGNN - DistDGL

(e) Rand, 𝜌 = 0.01%, 𝑘 = 128
Figure 7: [The two leftmost plots: Strong scaling analysis for the MS Academic Knowledge Graph with 111M vertices and 3.2B edges; details in Section 8.3.
[The three rightmost plots]: Weak scaling for empirical verification of our communication cost analyses from Section 7; details in Section 8.4; the graphs (Rand) used
are generated according to the random uniform model. The first datapoint in each plot (i.e., the one for a single GPU / compute node) corresponds to a graph with 𝑛 ≈ 131k, while
the last datapoint (29 nodes) corresponds to 𝑛 ≈ 3M (#vertices). We also vary the sparsity/density, to be between 1% and 0.01%, corresponding to𝑚 (#edges) being between ≈171
million and ≈90 billion edges. Missing data points indicate that a baseline did not scale to a given node count, or that it did not fit in combined node memories.

8.2 Performance Analysis
We first consider the strong scaling scenario. The results for differ-
ent graph sparsities/densities are shown in Figure 6. The largest
considered graphs have ≈3 million vertices and ≈90 billion edges.

Our implementations are in many cases faster than DistDGL
when 𝑘 = 16. For example, our AGNN and GAT implementations
are more than 3–5× faster than DistDGL for graph density 𝜌 =

0.01% in all considered node count scenarios. In addition, our VA
implementation also outperforms DistDGL, reaching the speedups
of 2–3× over DistDGL for 𝜌 = 0.01%. For 𝜌 = 1%, our AGNN
implementation is comparable to DistDGL, while VA and GAT are
slower (by up to >5×). Still, these results illustrate the difference
between processing a single mini-batch of 16k vertices (DistDGL)
vs. a full-batch of 131k or 262k vertices, and 172M or 687M edges.
Furthermore, with the growing count of compute nodes (e.g., 16 for
𝑛 = 131k, 𝑘 = 16, the advantages of the global formulations become
more prominent and they start to outperform DistDGL (note that,
despite broad experimentation with configuration and parameters,
we were unable to scale DistDGL to larger node counts due to OOM
errors). This illustrates that the global formulation does scale better
than the local formulation as implemented in DistDGL. At the same
time, the communication latency is minimized due to, e.g., efficient
use of collectives. The results for 𝑘 = 128 indicate that the latency
gap between the baselines increases. Here the GAT implementation
has the best performance within the globally formulated models;

GAT - This Work
GAT - DistDGL

VA - This Work
VA - DistDGL

AGNN - This Work
AGNN - DistDGL

1 | 131k 4 | 262k 16 | 524
Compute Nodes | Vertices

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

(a) 𝜌 = 0.1%, 𝑘 = 16

1 | 131k 4 | 262k 16 | 524
Compute Nodes | Vertices

10 1

100

101

102

R
u
n
ti

m
e
 [

s]

(b) 𝜌 = 0.01%, 𝑘 = 16
Figure 8: Weak scaling analysis. The used graphs are generated according to the
Kronecker model. We vary the density of the adjacency matrix, defined as 𝜌 =𝑚/𝑛2 .
We scale the number of vertices 𝑛 proportionally to the square root of the node count.
Keeping sparsity 𝜌 fixed, the number of non-zeros𝑚 of the adjacency matrix scales
proportionally to the number of compute nodes. Missing data points indicate that a
baseline did not scale to a given node count, or that it did not fit in combined node
memories.

it is comparable to DistDGL for 𝜌 = 0.01%, despite the fact that
DistDGL still processes only one mini-batch.

We also analyze the weak scaling scenario: we scale the number
of vertices 𝑛 proportionally to the square root of the node count.
Keeping sparsity 𝜌 fixed, the number of non-zeros𝑚 of the adja-
cency matrix scales proportionally to the number of nodes. The
results for different graph sparsity/density are shown in Figure 7 for
random uniform graphs (the three rightmost plots) and in Figure 8
for Kronecker graphs. The largest considered graphs have ≈171
million vertices and ≈90 billion edges. Our implementations are
faster than DistDGL, and they also exhibit excellent weak scaling.
For example, our vanilla attention implementation retains up to 57%
parallel efficiency on 512 nodes; the global formulations of other
models come with similar advantages. The GAT implementation
with 1% graph density has the communication overhead of 0.41s
on 32 nodes in the global formulation. At the scale of 512 nodes,
our implementation’s communication cost for the same benchmark
is only 1.13s. The achieved speedup against the state-of-the-art
shows the large potential of our approach, as the global view of
the GNN allows us to accelerate computation and communication.
Each node’s workload, expressed as a linear algebra equation, is
processed efficiently, optimizing shared-memory performance. At
the same time, the communication latency is minimized due to
message aggregation and efficient use of collectives.

Finally, we were only able to run the single-node frameworks
(DGL [83], dgNN [94]) for a few scenarios, in almost all the graphs
they crashed due to OOM errors. Thus, while they were always
much faster than our implementation and also than DistDGL, they
are unable to process large datasets targeted in this work.

8.3 Processing Large Real-World Graphs
We also successfully scale both training and inference of the con-
sidered models on the large MAKG using our global formulations
(DistDGL experienced regular OOM crashes). We show the strong
scaling results in Figure 7, both for inference and for training. When
using 16 features, we are able to successfully process MAKG even
on 16 compute nodes for most models (the models that need more
than 16 nodes are VA and AGNN). All the models exhibit excellent
scaling characteristics. For 𝑘 = 64, only GAT can be processed with
64 nodes, all other models require 256 nodes at the minimum.When
using 128 features, we can process MAKG using VA and AGNN only
on 1,024 nodes; GAT – which puts less pressure on the memory –
can also be executed on 256 nodes. This illustrates that our global

10

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

formulation fosters scaling to very large node and core counts, suc-
cessfully processing the largest GNN datasets available; even for
1,024 nodes, the communication does not become the bottleneck.

8.4 Verification of Theoretical Predictions
(aka. Global vs. Local Formulation). We also analyze our pre-
dictions for the communication volume from Section 7, i.e., the
global formulation has lower communication volume if the maxi-
mum degree 𝑑 ∈ 𝜔 (√𝑝). For this, we use Erdős-Rényi graphs with
a random uniform degree distribution (Rand). As we determined
in Section 7.3, denser Rand graphs should come with more advan-
tages in performance for the global formulation compared to the
local one. In this setting, we compare our global formulation to
the local formulation (represented by DistDGL) in Figure 7 (the
three leftmost plots), for three densities 𝜌 (1%, 0.1%, and 0.01%). We
consider the weak scaling scenario and the inference pass; we scale
the number of vertices 𝑛 proportionally to the square root of the
node count. Keeping sparsity fixed, the number of non-zeros𝑚 of
the adjacency matrix scales proportionally to the number of nodes.
The largest considered graphs have ≈3 million vertices and ≈90
billion edges. Here, DistDGL is significantly slower than our work,
which is caused by excellent load balancing properties of the used
random uniformmatrices, combined with the fact that the inference
in the global formulation only involves a single SDDMM, SpMM,
and MM product (in one GNN layer), with one of the dense matrices
being also small and fully replicated on each process. Yet, the more
important observation is that – with the decreasing density 𝜌 – as
expected in our analysis for Erdős-Rényi graphs – the difference
between DistDGL and our work consistently decreases.

To further investigate our predictions, we also consider here
an example C-GNN (the simple graph convolution model). This
model can be seen as a special case of an A-GNN, with a single
GNN inference later consisting of one SpMM and one MM. Thus,
the communication volume bounds derived in Section 7 also hold
for this model. Similarly, the difference between the global and the
local approach decreases with the increasing 𝜌 also for a C-GNN,
when Erdős-Rényi graphs are used.

9 RELATEDWORK
Irregular computations with linear algebra building blocks A
lot of work has been dedicated to expressing graph algorithms with
building blocks using matrices, vectors, and operations on them,
such as sparse-dense products. This includes BFS [6, 11, 17, 19],
Betweenness Centrality [69], Jaccard similarity and clustering [10],
and many others [1–3, 12, 34, 60, 90, 96]. Recently, efforts were
made to apply this approach to C-GNNs [8, 75, 83]. We extend this
line of work by offering novel GNN formulations based on tensor
algebra, targeting A-GNNs. Our generic GNN formulation can be
used as a blueprint for future GNN models.

GraphBLAS is a standard for formulating graph algorithms us-
ing linear algebra building blocks [46, 47]. Our global formulations
could easily be used with GraphBLAS implementations such as
Combinatorial BLAS [18], GraphMat [72], or GraphBLAST [91].

GNN Frameworks & Accelerators A large number of frame-
works and accelerators for GNNs have recently been developed [23,
32, 42, 55, 75, 82, 84, 86, 89, 99]. Our formulations could be used
together with many of these systems for more performance.

The programming model of DGL offers two fundamental build-
ing blocks, a generalized SDDMM (g-SDDMM) and a generalized
SpMM (g-SpMM). Yet, DGL does not provide global formulations
based on g-SDDMM and g-SpMM for A-GNN models such as GAT
(instead, the g-SDDMM and g-SpMM building blocks are imple-
mented using the local formulation when targeting many A-GNNs).
Here, our Ψ kernels in GAT or AGNN could be seamlessly incor-
porated as the g-SDDMM routines to provide matrix-based imple-
mentations of GAT and AGNN within DGL.

10 CONCLUSION
Attentional GNNs (A-GNNs) form a very powerful class of methods
in graph ML. Yet, they are very challenging to scale due to their
unique and complex design.

In this work, we enhance the performance and scalability of
many A-GNNs. We achieve this by designing a generic “global”
mathematical formulation based on tensors grouping all feature
vectors, weights, and the adjacency graph structure. We provide
specialized formulations for both the forward and backward prop-
agation passes of several models, such as the Graph Attention
Network or the Attention-based GNN. Our formulations are en-
tirely independent of the underlying implementation and can be
seamlessly used with existing frameworks based on tensor algebra,
for example, Combinatorial BLAS. Moreover, while we focus on full-
batch training of A-GNNs, one can straightforwardly extend most
of our routines to mini-batching and models outside the A-GNN
family, such as Graph Networks.

We implement the devised formulations with communication-
minimizing routines that harness several optimizations based on
kernel fusion. Our design comes with both theoretical advantages
over the competition, for example, in the amount of communicated
data, and empirical speedups such asmore than 5× over DistDGL for
different scenarios. Overall, our work deepens the understanding of
A-GNNs, as it illustrates that – despite their complex formulations
– their execution can be reduced to only a few tensor kernels, and
it can harness tuned existing routines such as SpMM or SDDMM.

Acknowledgements
We thank Hussein Harake, Colin McMurtrie, Mark Klein, Angelo
Mangili, and the whole CSCS team granting access to the Ault
and Daint machines, and for their excellent technical support. We
thank Timo Schneider for help with computing infrastructure at
SPCL. This project received funding from the European Research
Council (Project PSAP, No. 101002047), and the European High-
Performance Computing Joint Undertaking (JU) under grant agree-
ment No. 955513 (MAELSTROM). This project was supported by
the ETH Future Computing Laboratory (EFCL), financed by a do-
nation from Huawei Technologies. This project received funding
from the European Union’s HE research and innovation programme
under the grant agreement No. 101070141 (Project GLACIATION).
This work was also supported in part by the European Union’s
Horizon 2020 research and innovation programme under the grant:
Sano No. 857533, the International Research Agendas programme
of the Foundation for Polish Science, co-financed by the EU under
the European Regional Development Fund, and the Swiss National
Science Foundation (Project QuaTrEx, No. 209358).

11

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

References
[1] Ariful Azad, Aydın Buluç, and John Gilbert. 2015. Parallel Triangle Counting and

Enumeration Using Matrix Algebra. In Proceedings of the International Parallel
and Distributed Processing Symposium Workshop (IPDPSW ’15). IEEE, 804–811.

[2] Ariful Azad, Aydın Buluç, Xiaoye S. Li, Xinliang Wang, and Johannes Langguth.
2020. A Distributed-Memory Algorithm for Computing a Heavy-Weight Perfect
Matching on Bipartite Graphs. SIAM Journal on Scientific Computing 42, 4 (2020),
C143–C168.

[3] Ariful Azad, Mathias Jacquelin, Aydın Buluç, and Esmond G Ng. 2017. The
Reverse Cuthill-McKee Algorithm in Distributed-Memory. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS ’17). IEEE,
22–31.

[4] Ariful Azad, Oguz Selvitopi, Md Taufique Hussain, John R Gilbert, and Aydın
Buluç. 2022. Combinatorial BLAS 2.0: Scaling Combinatorial Algorithms on
Distributed-Memory Systems. IEEE Transactions on Parallel and Distributed
Systems 33, 4 (2022), 989–1001.

[5] Muhammed Fatih Balın, Kaan Sancak, and Ümit V Çatalyürek. 2021. MG-GCN:
Scalable Multi-GPU GCN Training Framework. arXiv:2110.08688

[6] Scott Beamer, Aydın Buluç, Krste Asanovic, and David Patterson. 2013. Dis-
tributed Memory Breadth-First Search Revisited: Enabling Bottom-Up Search. In
Proceedings of the International Symposium on Parallel & Distributed Processing,
Workshops and PhD Forum (IPDPSW ’13). IEEE, 1618–1627.

[7] Maciej Besta, Raphael Grob, Cesare Miglioli, Nicola Bernold, Grzegorz Kwas-
niewski, Gabriel Gjini, Raghavendra Kanakagiri, Saleh Ashkboos, Lukas Gi-
aninazzi, Nikoli Dryden, and Torsten Hoefler. 2022. Motif Prediction with
Graph Neural Networks. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’22). 35–45.

[8] Maciej Besta and Torsten Hoefler. 2022. Parallel and Distributed Graph Neural
Networks: An In-Depth Concurrency Analysis. arXiv:2205.09702

[9] Maciej Besta, Patrick Iff, Florian Scheidl, Kazuki Osawa, Nikoli Dryden, Michał
Podstawski, Tiancheng Chen, and Torsten Hoefler. 2022. Neural Graph
Databases. In Proceedings of the First Learning on Graphs Conference. Proceedings
of Machine Learning Research, Vol. 198. PMLR, 31:1–31:38.

[10] Maciej Besta, Raghavendra Kanakagiri, Harun Mustafa, Mikhail Karasikov,
Gunnar Rätsch, Torsten Hoefler, and Edgar Solomonik. 2019. Communication-
Efficient Jaccard Similarity for High-Performance Distributed Genome Compar-
isons. arXiv:1911.04200

[11] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017.
SlimSell: A Vectorizable Graph Representation for Breadth-First Search. In
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS ’17). IEEE, 32–41.

[12] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To Push or To Pull: On Reducing Communication and Syn-
chronization in Graph Computations. In Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’17).
ACM, 93–104.

[13] P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression Tech-
niques. In Proceedings of the 13th International Conference on World Wide Web
(WWW ’04). ACM, 595–602.

[14] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. 2021.
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
arXiv:2104.13478

[15] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data.
IEEE Signal Processing Magazine 34, 4 (2017), 18–42.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, TomHenighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, JeffreyWu, ClemensWinter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (Eds.). Vol. 33. 1877–1901.

[17] Aydın Buluç, Scott Beamer, Kamesh Madduri, Krste Asanovic, and David Pat-
terson. 2017. Distributed-Memory Breadth-First Search on Massive Graphs.
arXiv:1705.04590

[18] Aydın Buluç and John R Gilbert. 2011. The Combinatorial BLAS: Design, Im-
plementation, and Applications. Int. J. High Perform. Comput. Appl. 25, 4 (Nov
2011), 496–509.

[19] Aydın Buluç and Kamesh Madduri. 2011. Parallel Breadth-First Search on
Distributed Memory Systems. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’11). ACM,
Article 65, 12 pages.

[20] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris,
and Petar Veličković. 2021. Combinatorial Optimization and Reasoning with
Graph Neural Networks. arXiv:2102.09544

[21] Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph Mining: Laws,
Generators, and Algorithms. ACM Comput. Surv. 38, 1 (June 2006), 69 pages.

[22] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin
Murphy. 2020. Machine Learning on Graphs: A Model and Comprehensive
Taxonomy. arXiv:2005.03675

[23] Zhaodong Chen, Mingyu Yan, Maohua Zhu, Lei Deng, Guoqi Li, Shuangchen
Li, and Yuan Xie. 2020. FuseGNN: Accelerating Graph Convolutional Neural
Network Training on GPGPU. In Proceedings of the 39th International Conference
on Computer-Aided Design (ICCAD ’20). ACM, Article 60, 9 pages.

[24] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-Scale.
Proc. VLDB Endow. 8, 12 (Aug 2015), 1804–1815.

[25] Diane J Cook and Lawrence B Holder (Eds.). 2006. Mining Graph Data. John
Wiley & Sons.

[26] Lisandro Dalcin and Yao-Lung L. Fang. 2021. mpi4py: Status Update After 12
Years of Development. Computing in Science & Engineering 23, 4 (2021), 47–54.

[27] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Con-
volutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett (Eds.). Vol. 29. 3844–3852.

[28] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking Graph Neural Networks. arXiv:2003.00982

[29] Bradley Efron. 2000. The Bootstrap and Modern Statistics. J. Amer. Statist. Assoc.
95, 452 (2000), 1293–1296.

[30] Paul Erdös and Alfréd Rényi. 1961. On the Evolution of Random Graphs. Bull.
Inst. Internat. Statist 38, 4 (1961), 343–347.

[31] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese,
Bob Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard.
2012. Cray Cascade: A Scalable HPC System Based on a Dragonfly Network.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE, Article 103, 9 pages.

[32] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. arXiv:1903.02428

[33] Ziqi Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Lanqing Li, Peilin Zhao,
Huanming Yang, Yong Huang, and Jia Li. 2023. Hierarchical graph learning for
protein–protein interaction. Nature Communications 14, 1093 (2023).

[34] Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt,
Andrew Tritt, Aydin Buluç, Leonid Oliker, and Katherine Yelick. 2019. Extreme
Scale de Novo Metagenome Assembly. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC
’18). IEEE, Article 10, 13 pages.

[35] Lukas Gianinazzi, Maximilian Fries, Nikoli Dryden, Tal Ben-Nun, Maciej Besta,
and Torsten Hoefler. 2021. Learning Combinatorial Node Labeling Algorithms.
arXiv:2106.03594

[36] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learn-
ing on Graphs: Methods and Applications. arXiv:1709.05584

[37] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (2020), 357–362.

[38] Loc Hoang, Xuhao Chen, Hochan Lee, Roshan Dathathri, Gurbinder Gill, and
Keshav Pingali. 2021. Efficient Distribution for Deep Learning on Large Graphs.
In Proceedings of the Workshop on Graph Neural Networks and Systems (GNNSys
’21).

[39] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. 2004. Cyclic Pattern
Kernels for Predictive Graph Mining. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’04).
158–167.

[40] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning on
Graphs. arXiv:2103.09430

[41] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. arXiv:2005.00687

[42] Yuwei Hu, Zihao Ye, MinjieWang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang, Zhiru
Zhang, and Yida Wang. 2020. FeatGraph: A Flexible and Efficient Backend for
Graph Neural Network Systems. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’20).
IEEE, Article 71, 13 pages.

[43] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2020. Im-
proving the Accuracy, Scalability, and Performance of Graph Neural Networks
with Roc. In Proceedings of Machine Learning and Systems (MLSys ’20, Vol. 2),
I. Dhillon, D. Papailiopoulos, and V. Sze (Eds.). 187–198.

[44] Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A Survey of Frequent
Subgraph Mining Algorithms. The Knowledge Engineering Review 28, 1 (2013),

12

https://arxiv.org/abs/2110.08688
https://arxiv.org/abs/2205.09702
https://arxiv.org/abs/1911.04200
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1705.04590
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/2005.03675
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/2106.03594
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/2103.09430
https://arxiv.org/abs/2005.00687

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations SC ’23, November 12–17, 2023, Denver, CO, USA

75–105.
[45] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,

Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Bal-
lard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub
Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy,
Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer,
Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate
protein structure prediction with AlphaFold. Nature 596, 7873 (2021), 583–589.

[46] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz Franchetti,
John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning
Meyerhenke, Scott McMillan, Carl Yang, John D. Owens, Marcin Zalewski,
Timothy Mattson, and Jose Moreira. 2016. Mathematical Foundations of the
GraphBLAS. In High Performance Extreme Computing Conference (HPEC ’16).
IEEE, 1–9.

[47] Jeremy Kepner, David Bader, Aydın Buluç, John Gilbert, Timothy Mattson, and
Henning Meyerhenke. 2015. Graphs, Matrices, and the GraphBLAS: Seven Good
Reasons. Procedia Computer Science 51 (2015), 2453–2462.

[48] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-
Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE, 77–88.

[49] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the International Conference
on Learning Representations (ICLR ’17).

[50] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Pro-
ceedings of the 22nd International Conference on World Wide Web (WWW ’13
Companion). ACM, 1343–1350.

[51] Grzegorz Kwasniewski, Tal Ben-Nun, Lukas Gianinazzi, Alexandru Calotoiu,
Timo Schneider, Alexandros Nikolaos Ziogas, Maciej Besta, and Torsten Hoefler.
2021. Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower
Bounds for Statically Analyzable Programs. In Proceedings of the 33rd Symposium
on Parallelism in Algorithms and Architectures (SPAA ’21). ACM, 328–339.

[52] Grzegorz Kwasniewski, Tal Ben-Nun, Alexandros Nikolaos Ziogas, Timo Schnei-
der, Maciej Besta, and Torsten Hoefler. 2021. On the Parallel I/O Optimality of
Linear Algebra Kernels: Near-Optimal LU Factorization. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’21). 463–464.

[53] Grzegorz Kwasniewski, Marko Kabić, Maciej Besta, Joost VandeVondele, Raffaele
Solcà, and Torsten Hoefler. 2019. Red-Blue Pebbling Revisited: Near Optimal
Parallel Matrix-Matrix Multiplication. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’19).
ACM, Article 24, 22 pages.

[54] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[55] Chris Lin, Gerald J Sun, Krishna C Bulusu, Jonathan R Dry, and Marylens
Hernandez. 2020. Graph Neural Networks Including Sparse Interpretability.
arXiv:2007.00119

[56] Haiyang Lin, Mingyu Yan, Xiaochun Ye, Dongrui Fan, Shirui Pan, Wenguang
Chen, and Yuan Xie. 2022. A Comprehensive Survey on Distributed Training of
Graph Neural Networks. arXiv:2211.05368

[57] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wenguang
Chen, Lufei Zhang, Torsten Hoefler, Xiaosong Ma, Xin Liu, Weimin Zheng, and
Jingfang Xu. 2018. ShenTu: Processing Multi-Trillion Edge Graphs on Millions
of Cores in Seconds. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’18). IEEE, Article
56, 11 pages.

[58] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020. PaGraph:
Scaling GNN Training on Large Graphs via Computation-Aware Caching. In Pro-
ceedings of the 11th Symposium on Cloud Computing (SoCC ’20). ACM, 401–415.

[59] Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua
Peng, Hongzheng Chen, Hongzhi Chen, and Chuanxiong Guo. 2021. BGL:
GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing.
arXiv:2112.08541

[60] Adam Lugowski, David Alber, Aydın Buluç, John R. Gilbert, Steve Reinhardt, Yun
Teng, and Andrew Waranis. 2012. A Flexible Open-Source Toolbox for Scalable
Complex Graph Analysis. In Proceedings of the SIAM International Conference
on Data Mining (SDM). 930–941.

[61] Anjun Ma, Xiaoying Wang, Jingxian Li, Cankun Wang, Tong Xiao, Yuntao Liu,
Hao Cheng, JuexinWang, Yang Li, Yuzhou Chang, Jinpu Li, DuolinWang, Yuexu
Jiang, Li Su, Gang Xin, Shaopeng Gu, Zihai Li, Bingqiang Liu, Dong Xu, and
Qin Ma. 2023. Single-cell biological network inference using a heterogeneous
graph transformer. Nature Communications 14, 964 (2023).

[62] Diane Maclagan and Bernd Sturmfels. 2021. Introduction to Tropical Geometry.
Graduate Studies in Mathematics, Vol. 161. American Mathematical Society.

[63] Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. 2021. Trop-
ical Geometry and Machine Learning. Proc. IEEE 109, 5 (2021), 728–755.

[64] VasimuddinMd, Sanchit Misra, GuixiangMa, RamanarayanMohanty, Evangelos
Georganas, Alexander Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and
Sasikanth Avancha. 2021. DistGNN: Scalable Distributed Training for Large-
Scale Graph Neural Networks. arXiv:2104.06700

[65] Grigory Mikhalkin. 2006. Tropical Geometry and its applications.
arXiv:math/0601041

[66] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman
Loomis. 2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Cal-
culations. Proceedings of the Workshop on ML Systems.

[67] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. Proceedings of the AAAI
Conference on Artificial Intelligence 29, 1 (Mar 2015).

[68] Oguz Selvitopi, Benjamin Brock, Israt Nisa, Alok Tripathy, Katherine Yelick, and
Aydın Buluç. 2021. Distributed-Memory Parallel Algorithms for Sparse Times
Tall-Skinny-Dense Matrix Multiplication. In Proceedings of the International
Conference on Supercomputing (ICS ’21). ACM, 431–442.

[69] Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling
Betweenness Centrality Using Communication-Efficient Sparse Matrix Multi-
plication. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’17). ACM, Article 47, 14 pages.

[70] Edgar Solomonik, Erin Carson, Nicholas Knight, and James Demmel. 2017.
Trade-Offs Between Synchronization, Communication, and Computation in
Parallel Linear Algebra Computations. ACM Trans. Parallel Comput. 3, 1, Article
3 (Jan 2017), 47 pages.

[71] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel. 2013.
Cyclops Tensor Framework: Reducing Communication and Eliminating Load
Imbalance in Massively Parallel Contractions. In Proceedings of the 27th Inter-
national Symposium on Parallel and Distributed Processing (IPDPS ’13). IEEE,
813–824.

[72] Narayanan Sundaram, Nadathur Satish, MdMostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. GraphMat: High Performance Graph Analytics Made
Productive. Proc. VLDB Endow. 8, 11 (July 2015), 1214–1225.

[73] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li.
2018. Attention-based Graph Neural Network for Semi-supervised Learning.
arXiv:1803.03735

[74] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao
Jia, Jinliang Wei, Keval Vora, Ravi Netravali, Miryung Kim, and Guoqing Harry
Xu. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with
Distributed CPU Servers and Serverless Threads. In Proceedings of the 15th
USENIX Symposium on Operating Systems Design and Implementation (OSDI ’21).
495–514.

[75] Alok Tripathy, Katherine Yelick, and Aydın Buluç. 2020. Reducing Communi-
cation in Graph Neural Network Training. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’20). IEEE, Article 70, 17 pages.

[76] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (Aug 1990), 103–111.

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Vol. 30. 5998–6008.

[78] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations (ICLR ’18).

[79] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
and Paul van Mulbregt. 2020. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods 17, 3 (2020), 261–272.

[80] Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2022. Marius++: Large-Scale Training of Graph Neural Networks on a
Single Machine. arXiv:2202.02365

[81] Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim,
and Yingyan Lin. 2022. PipeGCN: Efficient Full-Graph Training of Graph Con-
volutional Networks with Pipelined Feature Communication. arXiv:2203.10428

[82] Lei Wang, Qiang Yin, Chao Tian, Jianbang Yang, Rong Chen, Wenyuan Yu,
Zihang Yao, and Jingren Zhou. 2021. FlexGraph: A Flexible and Efficient Dis-
tributed Framework for GNN Training. In Proceedings of the Sixteenth European
Conference on Computer Systems (EuroSys ’21). ACM, 67–82.

[83] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li,
Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang,

13

http://snap.stanford.edu/data
https://arxiv.org/abs/2007.00119
https://arxiv.org/abs/2211.05368
https://arxiv.org/abs/2112.08541
https://arxiv.org/abs/2104.06700
https://arxiv.org/abs/math/0601041
https://arxiv.org/abs/1803.03735
https://arxiv.org/abs/2202.02365
https://arxiv.org/abs/2203.10428

SC ’23, November 12–17, 2023, Denver, CO, USA M. Besta et al.

Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. 2019.
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs.
arXiv:1909.01315

[84] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Efficient Runtime System for GNN Accel-
eration on GPUs. In Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’21). 515–531.

[85] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, Vol. 97. PMLR, 6861–6871.

[86] Yidi Wu, Kaihao Ma, Zhenkun Cai, Tatiana Jin, Boyang Li, Chenguang Zheng,
James Cheng, and Fan Yu. 2021. Seastar: Vertex-Centric Programming for
Graph Neural Networks. In Proceedings of the Sixteenth European Conference on
Computer Systems (EuroSys ’21). ACM, 359–375.

[87] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[88] Keyulu Xu,Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks? arXiv:1810.00826

[89] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. 2020. HyGCN: A GCN Accelerator with
Hybrid Architecture. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA ’20). IEEE, 15–29.

[90] Carl Yang, Aydın Buluç, and John D. Owens. 2018. Implementing Push-Pull
Efficiently in GraphBLAS. In Proceedings of the 47th International Conference on
Parallel Processing (ICPP ’18). ACM, Article 89, 11 pages.

[91] Carl Yang, Aydın Buluç, and John D. Owens. 2022. GraphBLAST: A High-
Performance Linear Algebra-Based Graph Framework on the GPU. ACM Trans.
Math. Softw. 48, 1, Article 1 (Feb 2022), 51 pages.

[92] Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang
Ge, Zhiqiang Zhang, Lin Wang, Jun Zhou, Yang Shuang, and Yuan Qi. 2020.
AGL: A Scalable System for Industrial-purpose Graph Machine Learning.

arXiv:2003.02454
[93] Haicang Zhang, Michelle S Xu, Xiao Fan, Wendy K Chung, and Yufeng Shen.

2022. Predicting functional effect of missense variants using graph attention
neural networks. Nature Machine Intelligence 4 (2022), 1017–1028.

[94] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan
Xie, and Yu Wang. 2022. Understanding GNN Computational Graph: A Coor-
dinated Computation, IO, and Memory Perspective. In Proceedings of Machine
Learning and Systems (MLSys ’22, Vol. 4), D. Marculescu, Y. Chi, and C. Wu (Eds.).
467–484.

[95] Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. 2018. Tropical Geometry of
Deep Neural Networks. In Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, Vol. 80. PMLR,
5824–5832.

[96] Yongzhe Zhang, Ariful Azad, and Aydın Buluç. 2020. Parallel Algorithms for
Finding Connected Components using Linear Algebra. J. Parallel and Distrib.
Comput. 144 (2020), 14–27.

[97] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2022. Deep Learning on Graphs:
A Survey. IEEE Transactions on Knowledge and Data Engineering 34, 1 (2022),
249–270.

[98] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. DistDGL: Distributed Graph
Neural Network Training for Billion-Scale Graphs. In 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3 ’20). ACM/IEEE, 36–44.

[99] Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, Qidong Su, Minjie
Wang, Chao Ma, and George Karypis. 2021. Distributed Hybrid CPU and GPU
training for Graph Neural Networks on Billion-Scale Graphs. arXiv:2112.15345

[100] Jie Zhou, Ganqu Cui, ShengdingHu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

[101] Alexandros Nikolaos Ziogas, Grzegorz Kwasniewski, Tal Ben-Nun, Timo Schnei-
der, and Torsten Hoefler. 2022. Deinsum: Practically I/O Optimal Multi-Linear
Algebra. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis (SC ’22). IEEE, Article 25, 15 pages.

14

https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2003.02454
https://arxiv.org/abs/2112.15345

Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
10.5281/zenodo.8081983

ARTIFACT IDENTIFICATION
We develop a novel mathematical formulation of graph attention
models based on tensors that group all the feature vectors for train-
ing and inference. The formulation enables straightforward adop-
tion of communication-minimizing routines, it fosters optimizations
such as vectorization, and it enables seamless integration with es-
tablished linear algebra DSLs or libraries such as GraphBLAS. Our
implementation uses a data redistribution scheme explicitly devel-
oped for sparse-dense tensor operations used heavily in GNNs, and
fusing optimizations that further minimize memory usage and com-
munication cost. We developed a framework in Python using CuPy,
NumPy and SciPy to implement the tensor kernels in CUDA and
use mpi4py to distribute the adjacency matrix and redistribute parts
of the tensor after each neural GNN layer as well as performing
aggregation during the layer computation.

We ensure theoretical asymptotic reductions in communicated
data compared to the established message-passing GNN paradigm.
Finally, we provide excellent scalability and speedups of even 4–5x
over modern libraries such as Deep Graph Library (DGL). The
framework is extensively benchmarked to show that these theoret-
ical reductions translate to performance gains in practice as well as
enabling comparison to other baselines and systems.

The computational artifacts of the submission are divided into
(A) source code, (B) datasets, and (C) benchmark data.

(A) Source Code
The source code covers three areas: A0 GNN models, which imple-
ment inference and training. A1 Benchmark code to measure the
runtime of the GNN models. A2 Plot scripts to generate the figures.

The code artifacts A0 and A1 can be found in the src directory,
where as the code artifact A2 is situated in the directory plots.

(B) Datasets
We use three types of datasets for the adjacency matrix: Kronecker
graphs (B0) are generated in a distributed way in main memory at
the beginning of the experiment based on the Graph500 Kronecker
generator. The graph is further processed by removing duplicate
edges and by ensuring that each vertex is connected to at least one
other vertex. It is also possible to load the adjacency matrix from a
file in the COO format stored in the compressed numpy (.npz) file
format. The real-world graph used in the evaluation is based on the
Microsoft Academic Knowledge Graph (B1) and was provided by
Open Graph Benchmark1. It contains 111 million vertices and 3.2
billion edges. Erdős–Rényi graphs are used for some of the weak
scaling experiments (B2). These graph are generated similar to the
Kronecker graphs distributed in the main memory at the beginning
of the experiment.

1https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M

(C) Benchmark Data
The experimental data from benchmarking the runtime of the GNN
models, from which the figures in the submission originate, is lo-
cated in the plots/results directory.

REPRODUCIBILITY OF EXPERIMENTS
Experimental Workflow
The codewritten for the submission is a framework based on Python
(A0) and can be found in the src directory. There are three base
classes in the file gnn_models.py: GnnLayer, GnnModel and Loss.
The forward and backward methods are overloaded for each model
(vanilla attention (VA), AGNN, and GAT), which allow caching of
intermediate results for training. The redistribution methods of the
GnnModel class are further overloaded for the distributed code to
reshuffle the output data of the previous layer as input for the next
layer using MPI collectives. There are two files for each model:

• {model-name}_model.py, which contains the GPU imple-
mentation for a single compute node and a CPU implemen-
tation as reference for validation.

• {model-name}_model_distr.py consists of the distributed
GPU implementation.

Both files also accommodate code for validation with the reference
implementation.

There are two benchmark scripts for the GNN models developed
for the submission (A1): unified_single_bench.py for bench-
marking on a single compute node (without the use of MPI) and
unified_distr_bench.py for benchmarking in a distributed en-
vironment. Each execution of the benchmark scripts performs an
experiment for a single specific configuration: model, task, #vertices,
#edges, #features.
% python3 unified_single_bench.py -m VA -v 10000

-e 1000000

is an example for a running a small benchmark on a single
compute node. Similarly one can benchmark the same workload in
a distributed environment by executing
% {process launcher} -n 4 python3 unified_distr_bench.py

-m VA -v 10000 -e 1000000

where the process launcher could be mpirun or srun (on SLURM
systems). The task execution is repeated a number of times with
additional warmup runs, the time of each task execution ismeasured
and the results (median and standard deviation) are appended to a
CSV file. The configuration of both scripts can be controlled with
the help of command line parameters:
usage: unified_distr_bench.py [-h] [-d [{random,file,kronecker}]]
[-s [SEED]] [-v [VERTICES]] [-e [EDGES]] [-t [{float32,float64}]]
[-m [{VA,GAT,AGNN}]] [-f [FILE]] [--features [FEATURES]]
[--inference] [-l [LAYERS]] [--repeat [REPEAT]] [--warmup [WARMUP]]

optional arguments:
-h, --help show this help message and exit
-d [{random,file,kronecker}], --dataset [{random,file,kronecker}]

The source of the adjacency matrix.
-s [SEED], --seed [SEED]

https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M

Besta, et al.

The seed for the random number generator.
-v [VERTICES], --vertices [VERTICES]

The number of vertices in the graph.
-e [EDGES], --edges [EDGES]

The number of edges in the graph.
-t [{float32,float64}], --type [{float32,float64}]

The type of the data.
-m [{VA,GAT,AGNN}], --model [{VA,GAT,AGNN}]

The model to test. [VA, GAT, AGNN]
-f [FILE], --file [FILE]

The file containing the adjacency matrix.
--features [FEATURES]

The number of features.
--inference Run inference only (not storing intermediate matrices).
-l [LAYERS], --layers [LAYERS]

The number of layers in the GNN model.
--repeat [REPEAT] The number of times to repeat the benchmark.
--warmup [WARMUP] The number of warmup runs.

While weights and inputs are generated randomly, the user can
specify the origin of the adjacency matrix with the help of the
-d/–dataset command line parameter. When loading the adjacency
matrix from a file in the COO format stored in the compressed
numpy (.npz) file format, the user has to specify the path to the
numpy file with -f/–file. In such a case, the number of vertices
and edges are read directly from the file, so the respective command
line parameters have no significance. It is also possible to generate
the adjacency matrix during the runtime: random uniform degree
distribution (-d uniform) or Kronecker graphs (-d kronecker).
-v/–vertices specifies the number of vertices in the graph, which
is identical to the dimensions of the adjacency matrix. -e/–edges
specifies the number of edges in the graph, which allows the user
to influence how sparse the graph is.

The model to benchmark can be chosen with the -m/–model
command line parameter: VA, GAT, AGNN. With –features the
user can specify the number of features and with -l/–layers the
numbers. The figures in the submission show plots for benchmarks
with three neural GNN layers. –repeat adjusts the number of times
the benchmark is repeated, where as –warmup states the number of
repetitions before the individual runs are measured. We repeated
the benchmark ten times with two additional warmup executions

-s/–seed sets the seed for the random number generator for the
random uniform degree distribution. We used the default seed in
our experiments. -t/–type adjusts the type of the data: we choose
float32. –inference lets the model run inference only without
storing intermediate matrices for the backward pass.

The current Kronecker graph creation process can only generate
graphs where the number of vertices is a power of two. If the user
specifies a number of vertices that is not, the program will round
down to the nearest number that is a power of two.

We provide two additional bash scripts (unified_strong.sh
and unified_weak.sh) to generate the necessary batch job scripts
for the strong and weak scaling workloads, where the command
line parameters are already set to the values from the submis-
sion (A1). The scripts also enqueue the jobs into the batch system.
Slurm scripts for Piz Daint are used as an example and should be
adapted for the target cluster accordingly. The results can be found
in unified_results.csv. We provide an empty result file in the
src directory, which is already initialized with the header required
for the plotting script.

Once all batch jobs are finished, the Python script
create_plots_artifact.py (A2) can be called to create plots

similar to the ones in the submission. The Python scripts expects the
experimental results in the file results/unified_results.csv.

As a baseline, we use DGL, a state-of-the-art framework for
GNNs. DGL employs mini-batch training, which processes many
orders of magnitude fewer vertices than the full-batch training
used by our work. However, in the absence of other distributed
full-batch training frameworks for attention GNNs at the time
of submission, DGL provides a valid HPC-oriented comparison.
We use DistDGL, the distributed version of DGL. For single-node
execution, we compare our work with the original shared-memory
DGL, which performs better (to maximize fairness).

Estimation of Execution Time
The benchmarking of the weak scaling workload took a little bit
over 90 minutes on Piz Daint and 140 minutes for the strong scaling
workload, when benchmarking 10 executions of each configuration.

Expected Results and Relationship to the
Results in the Submission
The expected results from the artifact should exactly match those
provided in the submission, assuming using the same SW and HW
configuration. Thus, we now describe the detailed configuration
needed for generating these results. Using different HW would
provide results with the same performance trends (i.e., with similar
relative differences between respective baselines). We first provide
the parametrization, referring directly to the results in the submis-
sion (the results obtained from the artifact match these results).

Each configuration should be executed at least 10 times.
Strong scaling experiments with all three models (VA, AGNN,

GAT) using Kronecker graphs (B0):

Figures 6 (a)/(e) number of vertices = 131072, number of edges
= 171798691, number of features = 16/128.

Figures 6 (b)/(f) number of vertices = 262144, number of edges
= 687194767, number of features = 16/128.

Figures 6 (c)/(g) number of vertices = 1048576, number of
edges = 109951162, number of featurs = 16/128.

Figures 6 (d)/(h) number of vertices = 2097152, number of
edges = 439804651, number of features = 16/128.

Weak scaling experiment with three models (VA, AGNN, GAT)
using Kronecker graphs (B0):

Figure 7(a) number of compute nodes = 1/4/16, number
of vertices = 131072/262144/524288, number of edges =
17179869/68719476/274877906, number of features = 16.

Figure 7(b) number of compute nodes = 1/4/16, number
of vertices = 131072/262144/524288, number of edges =
1717986/6871947/27487790, number of features = 16.

Figure 8’s (a) and (b) subplots present strong scaling analysis
for the MS Academic Knowledge Graph (B1) with 111M vertices
and 3.2B edges. The (c), (d), and (e) subplots show weak scaling
results on uniformly random graphs (B2)with a number of vertices
between 131072 and 2966016. The graphs’ density also changes;
1% in the (c) subplot, 0.1% in the (d) subplot, and 0.01% in the (e)
subplot.

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations

The results for the above figures, and the figures themselves,
can be generated using the described and provided reproducibility-
focused infrastructure described in the Experimental Workflow
paragraphs. We ensure that all the scripts and the general workflow
are easy to follow and use.

ARTIFACT DEPENDENCIES REQUIREMENTS
The implementation of the attention models is based on CuPy, so
CUDA-enabled NVIDIAGPUs are required to execute the respective
Python scripts.

The Python scripts of the attention model implementations don’t
depend on a specific operating system. However, when the adja-
cency matrix is generated from a Kronecker graph, a shared library
written in C is used. The code base of the shared library was written
for Linux-based environments. If the adjacency matrix is derived
from other input methods (random uniform, file loading), any op-
erating system that supports Python can be used.

The Python scripts depend on the following Python packages:
• argparse
• cupy
• matplotlib
• mpi4py
• numpy
• pandas
• scipy
• typing

The shared library written in C for the generation of Kronecker
graphs is based on Kronecker module from the Graph5002. We
include a stripped down version of the module in the artifact.

We use two synthetic datasets to evaluate the attention model
implementations. Kronecker graphs were chosen since they em-
ulate realistic real world graphs with their heavy-tail skewed de-
gree distribution. Erdős-Rényi graphs with random uniform degree
distribution were used to support our analysis of communication
volumes and the benefit of the global formulation for denser graphs.
We also provide results for one real world dataset: Microsoft Knowl-
edge Academic Graph (MAKG) with 111M vertices and 3.2B edges,
which is a standard real world dataset for large-scale GNNs. We use
one of the largest available GNN datasets to illustrate that the global
formulation scales to very large node and core counts without the
communication becoming a bottleneck.

We use DistDGL and dgNN as a baseline for comparison.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Installation: Python Packages
time: up to 20 minutes

The Python software environment required by our attention
model implementations can be installed with the help of a virtual
environment automatically. Instructions on how to use use venv3
can be found in the footnote.

step 1) create the virtual environment named gnn-global
% cd GNN_artifact

2https://graph500.org/?page_id=47
3https://docs.python.org/3/tutorial/venv.html

% python3 -m venv gnn-global

step 2) activate the virtual environment
% source gnn-global/bin/activate

step 3) install all necessary Python packages
% python3 -m pip install -r requirements.txt

step 4) install mpi4py using theMPI compiler of the target system
% MPICC=<the-correct-mpicc-in-the-system> python -m pip

install mpi4py

Once the Python packages are installed, the virtual environment
can later be activated by executing step 2). The virtual environment
can be left by calling:
% deactivate

Installation: Piz Daint
time: 10 minutes

Piz Daint already provides most of the software environment
necessary to execute the Python attention model implementations.
So instead of installing the Python packages like mentioned above,
only the following steps are necessary. Of course, the manual instal-
lation of the packages can also be done in a virtual environment.
% module load daint-gpu
% module load cudatoolkit
% module load numpy
% python -m pip install -U setuptools pip
% pip install cupy-cuda110
% pip install typing

Installation: Kronecker Shared Library
time: a few minutes

The shared library used to generate a Kronecker graph is based
on the Kronecker module from the Graph500 benchmark.
% cd GNN_artifact/src/kronecker
% edit Makefile.inc

- set CC to the MPI C compiler of your system
% make

result: graph.so

Experiments
A detailed description of the benchmarking workflow can be found
in the Experimental Workflow paragraphs.

Since the submission of all relevant experiments can be handled
by the job generator scripts, which hopefully should be simple to
adapt to the target system, the submission time should only be
a few minutes. After a few hours of waiting time hopefully all
experiments were executed and all necessary results have been
collected.

We used float32 as datatype for all experiments and the default
seed. Three layers were used for the experiments that were visu-
alized in the submission. We used two runs as warm up and then
executed the benchmark another ten times.

Figure 6: Strong Scaling. Benchmarks were run on Kronecker
graphs with all three models (VA, GAT, AGNN). The re-
spective job scripts can be generated and submitted with

https://graph500.org/?page_id=47

Besta, et al.

benchmark/unified_strong.sh. We used 1, 4, 16, 64 and 256 com-
pute nodes.

#vertices #edges #features
6a 131072 171798692 16
6b 262144 687194767 16
6c 1048576 109951163 16
6d 2097152 439804651 16
6e 131072 171798692 128
6f 262144 687194767 128
6g 1048576 109951163 128
6h 2097152 439804651 128

Table 1: Experimental parameters for Figure 6

Figure 7: Weak Scaling Kronecker Graphs. Benchmarks were run
on Kronecker graphs with all three models (VA, GAT, AGNN).
The respective job scripts can be generated and submitted with
benchmark/unified_weak.sh. A feature size of 16 was used for
all experiments.

#nodes #vertices #edges
1 131072 17179869
4 262144 68719477
16 524288 274877907

Table 2: Experimental parameters for Figure 7a: sparsity =
0.1%

#nodes #vertices #edges
1 131072 1717987
4 262144 6871948
16 524288 27487791

Table 3: Experimental parameters for Figure 7b: sparsity =
0.01%

Plotting
time: a few minutes

The results that were used to create the figures in the sub-
missions can be found in the plots/results directory. The fig-
ures from the submission can be created with the Python script
plots/create_plots.py. The resulting PDF files can be found in
the directory plots/plots.

To visualize the results from the artifact, we prepared
a Python script (plots/create_plots_artifact.py).
The script expects the experimental data in the file
plots/results/unified_results.csv. The resulting PDF
files can be found in the directory plots/plots_new.

Both Python scripts expect to be run from inside the plots direc-
tory.

	ABSTRACT
	1 INTRODUCTION
	2 GRAPH NEURAL NETWORKS
	2.1 General Notation
	2.2 Local Formulations of GNN Models

	3 TENSOR ALGEBRA BUILDING BLOCKS
	4 TENSOR FORMULATIONS FOR INFERENCE
	4.1 Global Formulations of
	4.2 Global Formulation of Graph Softmax
	4.3 Global Formulation of
	4.4 Global Formulation of and

	5 TENSOR FORMULATIONS FOR TRAINING
	5.1 General Backward Pass Derivation
	5.2 General Training Formulation
	5.3 Vanilla Attention Backpropagation

	6 DESIGN & IMPLEMENTATION
	6.1 Virtual Tensors for Space Optimization
	6.2 Fusing Optimizations
	6.3 Communication Optimizations
	6.4 Implementation Details

	7 THEORETICAL ANALYSIS
	7.1 Communication Cost of Global Formulation
	7.2 Inference vs. Training
	7.3 Analysis for Erdős–Rényi Graphs

	8 EVALUATION
	8.1 Evaluation Setup
	8.2 Performance Analysis
	8.3 Processing Large Real-World Graphs
	8.4 Verification of Theoretical Predictions

	9 RELATED WORK
	10 CONCLUSION
	References

