

Sespel_eth

M. BESTA, P. RENC, R. GERSTENBERGER, P. S. LABINI, A. ZIOGAS, T. CHEN, L. GIANINAZZI, F. SCHEIDL, K. SZENES, A. CARIGET, P. IFF, G. KWASNIEWSKI, R. KANAKAGIRI, C. GE, S. JAEGER, J. WAS, F. VELLA, T. HOEFLER High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations

Graphs are Powerful and Ubiquitous!

Graphs + Deep Learning = Graphs Neural Networks (GNNs)

Senior¹, Koray Kavukcuoglu¹,

Let's See Some Recent Success Stories of GNNs

Article A graph placement methodology for fast chip design Article

Received: 3 November 2020

Accepted: 13 April 2021

Published online: 9 June 2021

Check for updates

Advancing mathematics by guiding human intuition with AI

https://doi.org/10.1038/s41586-021-04086-x		
Received: 10 July 2021	Nena Marc	
Accepted: 30 September 2021		
Published online: 1 December 2021	Thep	
Openaccess		

Article Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ^{1,4} , Richard Evans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} ,		
Received: 11 May 2021	Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Žídek ^{1,4} , Anna Potapenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A. A. Kohl ^{1,4} , Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} ,		
Accepted: 12 July 2021			
Published online: 15 July 2021	Rishub Jain ^{1,4} , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegger ^{2,3} , Michalina Pacholska ¹ , Tamas Berghammer ¹ , Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuog		
Open access			
Check for updates	Pushmeet Kohli ¹ & Demis Hassabis ¹⁴		
	Proteins are essential to life, and understanding their structure can facilitate a		

Deep Learning (DL) in a Nutshell

A Primer on Graph Neural Networks (GNNs)

Local GNN formulations

Carlos and a second and a second a se

Taxonomy of Mathematical Formulations of GNNs

Local GNN formulations

 $\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$

Local GNN formulations

Formulations based on functions operating on single vertices & edges

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \underset{j \in N(i)}{\bigoplus} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

vector

vector

Local GNN formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Local GNN formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Local GNN formulations

Local GNN formulations

Local GNN formulations

$$\mathbf{h}_{i}^{(l+1)} = \phi\left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)}\right)\right)$$

Local GNN formulations

Local GNN formulations

$$\begin{split} \mathbf{\hat{b}} & \mathbf{\hat{h}}_{i-1}^{(l+1)} = \phi \left(\mathbf{h}_{i-1}^{(l+1)} \bigoplus_{j \in N(i-1)} \psi \left(\mathbf{h}_{i-1}^{(l)} \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{b}} & \mathbf{\hat{h}}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \\ \mathbf{\hat{b}} & \mathbf{\hat{h}}_{i+1}^{(l+1)} = \phi \left(\mathbf{h}_{i+1}^{(l+1)} \bigoplus_{j \in N(i+1)} \psi \left(\mathbf{h}_{i+1}^{(l)} \mathbf{h}_{j}^{(l)} \right) \right) \end{split}$$

Local GNN formulations

Formulations based on functions operating on single vertices & edges

Global GNN formulations

Formulations based on operations on matrices grouping all vertex & edge related vectors

$$\mathbf{h}_{i-1}^{(l+1)} = \phi \left(\mathbf{h}_{i-1}^{(l+1)} \bigoplus_{j \in N(i-1)} \psi \left(\mathbf{h}_{i-1}^{(l)} \mathbf{h}_{j}^{(l)} \right) \right) \xrightarrow{\text{All vertex feature vectors grouped together}}_{\text{grouped together}} \mathbf{Model}$$

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right) \xrightarrow{\text{occore}}_{\text{constrained}} \mathbf{H}^{l+1} = \sigma \left(\mathbf{Z} \right), \quad \mathbf{Z} = \Psi \mathbf{HW}$$

$$\mathbf{h}_{i+1}^{(l+1)} = \phi \left(\mathbf{h}_{i+1}^{(l+1)} \bigoplus_{j \in N(i+1)} \psi \left(\mathbf{h}_{i+1}^{(l)} \mathbf{h}_{j}^{(l)} \right) \right) \xrightarrow{\text{constrained}}_{\text{constrained}} \mathbf{H}^{l+1} = \sigma \left(\mathbf{Z} \right), \quad \mathbf{Z} = \Psi \mathbf{HW}$$

$$\mathbf{Model details (a transformation of, among others, the adjacency matrix)}$$

Local GNN formulations

Formulations based on functions operating on single vertices & edges

"Per-vertex" formulations can't expose data reuse!

$$\mathbf{h}_{i}^{(l+1)} = \phi \left(\mathbf{h}_{i}^{(l)}, \bigoplus_{j \in N(i)} \psi \left(\mathbf{h}_{i}^{(l)}, \mathbf{h}_{j}^{(l)} \right) \right)$$
$$\mathbf{h}_{i+1}^{(l+1)} = \phi \left(\mathbf{h}_{i+1}^{(l+1)} \bigoplus_{j \in N(i+1)} \psi \left(\mathbf{h}_{i+1}^{(l)} \mathbf{h}_{j}^{(l)} \right) \right)$$

Global GNN formulations

Formulations based on operations on matrices grouping all vertex & edge related vectors

All Global formulations can utilize optimal linear algebra algorithms!

- Communication-avoiding 2.5D MMM
- Tiling
- Kernel fusion

• •

Formulations based o single vert

Problem: Finding global formulations may be challenging

A TOP A TOP A

"Per-vertex" formulations can't

Global formulations can utilize

Global formulations are known for simple models such as Convolutional GNNs

ear algebra algorithms

ication-avoiding 2.5D

Kernel fusior

₽^{@spcl} ETHzürich

Global Formulations of GNN Models

The simplest model: Graph Convolution Network [1]

Highlighted row corresponds to the neighbors of a specific vertex *v*, whose feature vector is being computed

Highlighted column corresponds to the specific feature *f* that is being computed for vertex *v*

[1] T. Kipf et al. Semi-Supervised Classification with Graph Convolutional Networks. ICLR. 2017.

$\mathbf{H}^{(l+1)} = \mathbf{A} \times \mathbf{H}^{(l)} \times \mathbf{W}^{(l)}$

What are the global formulations of more complex models, such as attentional GNNs?

Also, why do we care?

Article

https://doi.org/10.1038/s41 Received: 11 May 2021 Accepted: 12 July 2021 Published online: 15 July 2

Open access

Check for updates

Highly accurate protein structure prediction with AlphaFold

Key technique?

586-021-03819-2	John Jumper ^{1,4 🖂} , Richard Eva	ans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} ,
021	Olaf Ronneberger ¹⁴ , Kath Anna Potapenko ¹⁴ , Alex Andrew J. Ballard ¹⁴ , And Rishub Jain ¹⁴ , Jonas Adlu Michal Zielinski ¹ , Martin Sebastian Bodenstein ¹ , I Pushmeet Kohli ¹ & Demi	Graph Attention Networks

Attention in GNN Models

Attention in GNN Models

Convolutional GNN

Attentional GNN

The co neighl We provide *generic* global formulations for any attentional GNNs, both for the **forward** and the **backward** propagation pass

The second s

Static, binary matrix adjacency matrix of the graph

Matrix Ψ with dynamic attention scores

Global Formulations of GNN Models

Example model: Graph Attention Network based on Dot Product (Vanilla Attention)

A COMPANY AND A COMPANY

A. Vaswani, et al. Attention is All you Need. NIPS. 2017

Local ψ formulation is very involving – how to obtain the global formulation?

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{u}\right]\right)\right)}{\sum_{y \in \widehat{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{u}$$

Local ψ formulation is very involving – how to obtain the global formulation?

the second and the

Local ψ formulation is very involving – how to obtain the global formulation?

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot |\mathbf{W}\mathbf{h}_{v}| |\mathbf{W}\mathbf{h}_{u}|\right)\right)}{\sum_{y \in \mathcal{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot |\mathbf{W}\mathbf{h}_{v}| |\mathbf{W}\mathbf{h}_{y}|\right)\right)}\mathbf{h}_{v}$$

Local ψ formulation is very involving – how to obtain the global formulation?

A start a second that

Local ψ formulation is very involving – how to obtain the global formulation?

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{u}\right]\right)\right)}{\sum_{y \in \widehat{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)}\mathbf{h}_{u}$$

Local ψ formulation is very involving – how to obtain the global formulation?

No. 1 Proventions -

vertex v

multiply by shared weight matrix

Local ψ formulation is very involving – how to obtain the global formulation?

A A REAL PROPERTY AND AND

Local ψ formulation is very involving – how to obtain the global formulation?

a transmitter

Local ψ formulation is very involving – how to obtain the global formulation?

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{u}\right]\right)\right)}{\sum_{y \in \mathcal{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{u}$$

Local ψ formulation is very involving – how to obtain the global formulation?

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{u}\right]\right)\right)}{\sum_{y \in \mathcal{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{u}$$

$$\psi_{v,u} = \frac{\exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{u}\right]\right)\right)}{\sum_{y \in \mathcal{N}(v)} \exp\left(\sigma\left(\mathbf{a}^{T} \cdot \left[\mathbf{W}\mathbf{h}_{v} \| \mathbf{W}\mathbf{h}_{y}\right]\right)\right)} \mathbf{h}_{u}$$

The second

 $\left(\mathbf{a}^T \cdot \left\| \mathbf{W} \mathbf{h}_v \right\| \mathbf{W} \mathbf{h}_u \right)$

exp

 σ

 $\left[\sigma \left(\mathbf{a}^T \cdot \left\| \mathbf{W} \mathbf{h}_v \right\| \mathbf{W} \mathbf{h}_u \right] \right]$

exp

grouping neighbors of all vertices

distribute weights

across all edges

matrix

feature vector

Partial sum

Let's see how **softmax** (sm) looks like in the global formulation

Global Formulations of GNN Kernels – Softmax

Canada and Carlos Tall

Global Formulations of GNN Kernels – Softmax

Tensor algebra expression

$$\begin{aligned} \operatorname{sm}(\mathcal{X}) &= \exp(\mathcal{X}) \oslash \operatorname{rs}_n(\exp(\mathcal{X})) \\ &= \exp(\mathcal{X}) \oslash \left(\exp(\mathcal{X}) \ \mathbf{1}\mathbf{1}^T \right) \end{aligned}$$

The second second second second

Global Formulations of GNN Kernels – Backward Pass

Generic formulation

$$\mathbf{G}^{l-1} = \sigma' \left(\mathbf{Z}^{l-1} \right) \odot \Gamma^{l}$$
$$\mathbf{Y}^{l} = \mathbf{H}^{l} \Psi \left(\mathcal{A}^{T}, \mathbf{H}^{l} \right) \mathbf{G}^{l} + \mathbf{G}^{l} \mathbf{W}^{l} \mathbf{H}^{l} \mathbf{H}^{T} \frac{\partial \Psi}{\partial \mathbf{W}^{l}}$$

Matrix view

Global Formulations of GNN Kernels – Backward Pass

The Entire Optimization Toolchain

A GNN model local formulation

A formulation provided by a user, e.g., a GNN model designer

 $\mathbf{h}_{i}^{l+1} = \phi\left(\mathbf{h}_{i}^{l}, \bigoplus_{j \in N(i)} \psi\left(\mathbf{h}_{i}^{l}, \mathbf{h}_{j}^{l}\right)\right)$

A GNN model global formulation

A global formulation designed using techniques from this work (Sections 3-5)

$$\begin{aligned} \mathbf{H}^{l+1} &= \sigma \left(\left(\Phi \circ \oplus \right) \left(\Psi \left(\mathcal{A}, \mathbf{H}^{l} \right), \mathbf{H}^{l} \right) \right) \\ \mathbf{Y}^{l} &= \mathbf{H}^{l^{T}} \Psi \left(\mathcal{A}^{T}, \mathbf{H}^{l} \right) \mathbf{G}^{l} \\ \mathbf{G}^{l} &= \sigma' \left(\mathbf{Z}^{l-1} \right) \odot \Gamma^{l-1} \end{aligned}$$
Execution: manual

Formulation optimization

An optimization of the formulation, aiming to reduce communication **Execution**: SOAP framework Example formulation $(\mathbf{i} \times \mathbf{f} \cdot \mathbf{j} \times (\mathbf{i} \cdot \mathbf{j} \times \mathbf{i} \cdot \mathbf{j} \times \mathbf{j} \times \mathbf{i} \cdot \mathbf{j} \times \mathbf{j} \times$

High-level implementation

An implementation of the model, potentially specifying details of parallelism or distribution

Execution: Manual, or using a library or a DSL (e.g., GraphBLAS, GraphBLAST, Combinatorial BLAS, GraphMat, Cyclops Tensor Framework)

Implementation optimizations

Fusing different kernels, applying

communication minimizing schemes

Execution: Manual, based on the

suggestions proposed in this work

Blue color: [this work]

Grey color: existing work

Code tuning

Code tuning, e.g., enhancing vectorizability

Execution: Manual

SOAP: G. Kwasniewski et al. Pebbles, Graphs, and a Pinch of Combinatorics: Towards Tight I/O Lower Bounds for Statically Analyzable Programs. SPAA. 2021.

50

Evaluation

CRAY

CRAY

CSCS

C11/1

C3

CRAY

CSCS Cray Piz Daint supercomputer

- Cray XC50 nodes
- Intel Xeon E5-2690 v3, 12 cores
- Single NVIDIA Tesla P100 per node
- 64 GB RAM per node

Considered Graph Datasets

Synthetic graphs

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.[2] P. Erdos and A. Renyi. On the evolution of random graphs. Pub. Math. Inst. Hun. A. Science. 1960.

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.


```
k=128
```

[1] J. Leskovec et al. Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Research. 2010.

♥^{@spcl} ♥^{@spcl_eth} ETHZÜriCh

A CONTRACTOR

#compute nodes

Seperation September 1998

runtime [s]

Weak Scaling Kronecker [1]

Construction of the second second second

Weak Scaling Kronecker [1]

A REAL PROPERTY AND A REAL

♥^{@spcl} **ETH**ZÜrich

A HIT IS A STATE TO THE STATE

Conclusions

