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Graph coloring

Fundamental
graph problem

Assign numbers, i.e., colors, to
each vertex, such that no

adjacent vertices have the
same color.

Goal: minimize the number of
used colors
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Graph coloring: applications

Schedule

Constructing a

(((( )))) schedule or a
Assigning (((( ’))) time-table
frequencies to

radio towers
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Graph coloring: applications

Schedule

Constructing a

(((( )))) schedule or a
Assigning (((( ’))) time-table
frequencies to

radio towers

Allocating registers

Sudoku ©
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Graph coloring & today’s graph computations

Graph
datasets

are huge
s

x .
[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

]

271 billion vertices,

12 trillion edges [1] o ,’
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Graph coloring & today’s graph computations
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[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist
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Graph Optimal graph WEMEVE

datasets coloring is NP- massive
are huge complete parallelism

[1] Heng Lin et al.: ShenTu: Processing Multi-Trillion Edge Graphs ,
on Millions of Cores in Seconds, SC18, Gordon Bell Finalist

Thus, one uses parallel heuristics that
. _am use areasonably low number of colors
B 271 oo vertices, B2 ) while being reasonably efficient

letﬂHkﬁ1edges[llLTff;9f /

>233TB

Lo
g v




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,

A: maximum vertex degree */



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,

A: maximum vertex degree */

They have

a common
structure




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,

A: maximum vertex degree */

They have

a common
structure

for each vertex v; in (v, .. v,):
find smallest color c not used by the neighbors of v,;

assign c to v;;
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m: number of edges,

A: maximum vertex degree */

They have This immediately The order of picking
a common ensures using at vertices impacts
structure most A+1 colors coloring quality

This sounds inherently

sequential...

for each vertex v; in (v; .. v,):
find smallest color c not used by the neighbors of v;;

assign c to v,;

...Parallelism is enabled by coloring in parallel

groups of vertices that are not adjacent (i.e.,
form an independent set).
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Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,

A: maximum vertex degree */

They have This immediately The order of picking
a common ensures using at vertices impacts

structure most A+1 colors coloring quality . .
This sounds inherently

sequential...

for each vertex v; in (v; .. v,):
find smallest color c not used by the neighbors of v;;
assign c to v,;
“Scheduled coloring” — the

vertex order determines
(“schedules”) when vertices are

...Parallelism is enabled by coloring in parallel

groups of vertices that are not adjacent (i.e.,
form an independent set). picked for being colored
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Maximize quality
(i.e., minimize
tused colors)

Goal 2

Maximize
performance
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Maximize quality
(i.e., minimize
#used colors) Both empirically and

with theoretical

properties (i.e.,
minimize work, depth,
and theoretical limit on

Maximize #used colors)
performance
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work: total number of operations
depth: longest chain of sequential
dependencies

Maximize quality
(i.e., minimize
#used colors) Both empirically and

with theoretical

properties (i.e.,
minimize work, depth,
and theoretical limit on

Maximize #used colors)

performance
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Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,
A lot of heuristics were A: maximum vertex degree,
d: graph’s degeneracy */

introduced, offering different
work-depth-quality tradeoffs

Ordering

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”

Random

Random
“Largest log-degree first”

“Smallest log-degree last”
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Parallel graph coloring heuristics /* n: number of vertices,
m: number of edges,
A lot of heuristics were A: maximum vertex degree,
o . 5 . ) *
introduced, offering different d: graph’s degeneracy */
work-depth-quality tradeoffs The associated coloring heuristics:
Ordering Depth Work  Quality

“First fit” (i.e., any order)

“Largest degree first”

“Smallest degree last”
Random

Random

“Largest log-degree first”

“Smallest log-degree last”
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Parallel graph coloring heuristics /* ni number of vertices,
m: number of edges,
A lot of heuristics were A: maximum vertex degree,
. . . . ) *
introduced, offering different d: graph’s degeneracy */
work-depth-quality tradeoffs The associated coloring heuristics:
Ordering Depth Work  Quality
“First fit” (i.e., any order) No general bounds; ©2(n) for some graphs On+m) A+1
“Largest degree first” No general bounds; ©2(A?) for some graphs On+m) A+1
“Smallest degree last” No general bounds; 2(n) for some graphs O(n + m) d+1
log n
Random E O (logﬁ)gn) On+m) A+1
Random E O (logn +log A - min { vim, A + lﬁggﬁ;;a” 3 O(n+m) A+1
“Largest log-degree first” (log n + log A - (mln {A,/m} + lofogﬁjlgoin )) O(n +m) A+1
2
“Smallest log-degree last” E O (log Alogn + log A - (mln {A,\/m} + lolgogﬁ):in)) O(n + m) A+1
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A lot of heuristics were A: maximum vertex degree,
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introduced, offering different d: graph’s degeneracy */
work-depth-quality tradeoffs The associated coloring heuristics:
Ordering Depth Work  Quality

“First fit” (i.e., any order) No general bounds; ©2(n) for some graphs O(n+m A+1
A+1
d+ 1

)
“Largest degree first” No general bounds; ©2(A?) for some graphs O(n+m)
)
Random O(n +m) A+1
)
)
)

“Smallest degree last” No general bounds; 2(n) for some graphs O(n +m

Random No need for going over A+l

“Largest log-degree first” these details (for now © ) O(n+m A+1

“Smallest log-degree last” O(n+m A+1
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introduced, offering different d: graph’s degeneracy */
work-depth-quality tradeoffs The associated coloring heuristics:
Ordering Depth Work  Quality

“First fit” (i.e., any order) §No general bounds; ©2(n) for some graphs O(n+m A+1
A+1
d+ 1

)
“Largest degree first” No general bounds; €2(A?) for some graphs O(n+m)
)
Random O(n +m) A+1
)
)
)

“Smallest degree last” No general bounds; £2(n) for some graphs O(n+m

Random No need for going over A+l
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Parallel graph coloring heuristics /7 ninumber of ‘;jg;;ces
A lot of heuristics were A: maximum vertex degree,
introduced, offering different d: graph’s degeneracy */
work-depth-quality tradeoffs The associated coloring heuristics:
Ordering Depth Work  Quality

“First fit” (i.e., any order) §No general bounds; ©2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; ©2(A?) for some graphs On+m)N A+1
“Smallest degree last” No general bounds; 2(n) for some graphs O(n + d+1
Random O(n #fm) A+1
Random No need for going over Ofp +m) A1
“Largest log-degree first” these details (for now © ) D(n +m) A+1
“Smallest log-degree last” O ) A+1

Almost all schemes have

only trivial quality bounds
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A lot of heuristics were

The only scheme with

Q B> =3 5

introduced, offering different
work-depth-quality tradeoffs

good quality bounds
iR pleNe[SeliglelelVsle [P iated coloring heuristics:

Ordering DEpth Work Quality
“First fit” (i.e., any order) §No general bounds; ©2(n Yfor some graphs On+m) [A+1
“Largest degree first” No general bounds; 2 (J&?) for some graphs OMem)M A+ 1
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Random O(n #fm) A+1
Random No need for going over Offp +m) A1
“Largest log-degree first” these details (for now © ) D(n +m) A+1
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: number of edges,

: maximum vertex degree,
: graph’s degeneracy */

Parallel graph coloring heuristics />

A lot of heuristics were

The only scheme with

Q B> =3 5

introduced, offering different
work-depth-quality tradeoffs

good quality bounds

iR pleNe[SeliglelelVsle [P iated coloring heuristics:
AR

Ordering Lot’s use it as a Work  Quality
“First fit” (i.e., any order) No general bounds; €( starting point... On+m) [A+1
“Largest degree first” No general bounds; Q(J&?) for some graphs OMem)M A+ 1
“Smallest degree last” No general bounds; £2(n) for some graphs O(n + d+1
Random O(n #F m) A+1
Random No need for going over Offp+m) A%
“Largest log-degree first” these details (for now © ) D(n+m) __ A+1
“Smallest log-degree last” O ) A+1

Almost all schemes have

only trivial quality bounds




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

“Smallest degree last”: fundamentals



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a Sl X
degree of at most s FINRES: Tl P

At |least one
vertex will
have degree
at most s
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

At least one
vertex will

have degree

at most s For any subgraph
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

- The degeneracy d of a graph G is the smallest s,

such that G is still s-degenerate

At least one
vertex will
have degree

at most s For any subgraph



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Intuitively, degeneracy captures the notion of

In, .

graph sparsity ,at any level”: in each subgraph,
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connected) vertex
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Intuitively, degeneracy captures the notion of

graph sparsity ,,at any level”: in each subgraph,

we will always find a low-degree (=sparsely
connected) vertex

Now, the coloring heuristics
that uses the degeneracy
order gives provable d+1

coloring quality
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Intuitively, degeneracy captures the notion of The lower the
graph sparsity ,,at any level”: in each subgraph, degeneracy is,

we will always find a low-degree (=sparsely the sparser
connected) vertex graph is

Now, the coloring heuristics

that uses the degeneracy Great, modern graphs are sparse,

order gives provable d+1 so d+1 should be low in practice
coloring quality
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

- The degeneracy d of a graph G is the smallest s,

such that G is still s-degenerate

At least one
vertex will
have degree

at most s For any subgraph
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“Smallest degree last”: fundamentals

— lterate over vertices in the degeneracy ordering

- A graph G is s-degenerate if, in each of its
induced subgraphs, there is a vertex with a
degree of at most s

- The degeneracy d of a graph G is the smallest s,
such that G is still s-degenerate

— The degeneracy ordering of
a given graph is an orderin :
& grap & vertex will
where each vertex v has at
have degree

most d neighbors that are At Most s
ordered higher than v For any subgraph

At least one
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— The degeneracy ordering of
a given graph is an ordering,

where each vertex v has at
most d neighbors that are
ordered higher than v i
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Degeneracy ordering: example

A degeneracy ordering of a 3-degenerate graph

— The degeneracy ordering of
a given graph is an ordering,

where each vertex v has at
most d neighbors that are
ordered higher than v
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Degeneracy ordering: example

A degeneracy ordering of a 3-degenerate graph

— The degeneracy ordering of
a given graph is an ordering,

where each vertex v has at
most d neighbors that are
ordered higher than v
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d(v): degree of a vertex v */
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Degeneracy ordering: derivation /* V: set of all vertices,
d(v): degree of a vertex v */

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.
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Degeneracy ordering: derivation /* V: set of all vertices,
d(v): degree of a vertex v */

How to derive the degeneracy ordering?

Strict degeneracy Simple: Sequentially remove vertices of smallest
order: degree, one by one.

itr = 0;

while V # 0:
Vinin = argmin v in V d(V);
V.=V \ {Vmin};
rank[v,;,] = itr++;
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Degeneracy ordering: derivation /* V: set of all vertices,
d(v): degree of a vertex v */

How to derive the degeneracy ordering?

Strict degeneracy Simple: Sequentially remove vertices of smallest
order: degree, one by one.

itr = 0;
while V # 0:
0 : . Deriving the
Vain = argmin , ;. d(v); ordering takes
V= VA {Vpin}s O(n) depth (i.e., it
rank[vy;,] = itr++; is inherently

sequential)
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Degeneracy ordering: derivation /* V: set of all vertices,
d(v): degree of a vertex v */

How to derive the degeneracy ordering?

Strict degeneracy Simple: Sequentially remove vertices of smallest
order: degree, one by one.

Deriving the The corresponding
ordering takes coloring heuristics is
O(n) depth (i.e., it thus bottlenecked by
is inherently the ordering
sequential) derivation
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Approximate degeneracy ordering /* V: set of all vertices,
d(v): degree of a vertex v,

d.g: average degree in V */

Strict degeneracy

order:

itr = 0;
while V # 0:
Vmin = argmin v in V d(V),

Vo=V \ {Vyinls

rank[v,;,] = 1tr++;
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Approximate degeneracy ordering /* V: set of all vertices,
d(v): degree of a vertex v,

d..: average degree in V */

avg®

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy
order:

itr = 0;

while V # 0:
Vinin = argmin v in V d(V);
V.=V \ {Vmin};
rank[v,;,] = itr++;
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Approximate degeneracy ordering /* V: set of all vertices,

d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy ADG: approximate
order: degeneracy order:

= itr++; forall v in R
rank[v] = itr;
++1itr;

in parallel:

min
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Approximate degeneracy ordering /* V: set of all vertices,

d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss A user-specified

parameter that

Strict degeneracy ADG: approximate SIS E
der: degeneracy order: performance-
—— 2 Y : quality tradeoff

= itr++; forall v in R
rank[v] = itr;
++1itr;

in parallel:

min
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Approximate degeneracy ordering /* n: the number of all vertices
V: set of all vertices,

d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss.

itr = ©
while V # 0:
win = AV | d(V) £ (1+€)d,,);
V=1V \ Rmin3
forall v in R ;, in parallel:
rank[v] = itr;
++1itr;

o)
|
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Approximate degeneracy ordering /* n: the number of all vertices
V: set of all vertices,

d(v): degree of a vertex v,
d.,.: average degree in V */

avg®

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Constructing R ; .

takes O(log n) depth

0
while V # @:
Rusn = (v | d(v) € (1+€)d,};
V=1V \ Rmin3
forall v in R ;, in parallel:
rank[v] = itr;
++1itr;

10
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

— Key idea: try a relaxation of the strict degeneracy

d,g: average degree in V */
order, at the cost of (some) accuracy loss.
Constructing R ; .
takes O(log n) depth
Subtracting R ;,, from 1t|:\ = 9;
V takes O(1) depth while V # 0:
Ruin = {v | d(v) £ (1+€)d,,.};
V=V \ R..;

forall v in R ;, in parallel:
rank[v] = itr;
++1itr;

10
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- Key idea: try a relaxation of the strict degeneracy j(v): degree of a vertex v,

order, at the cost of (some) accuracy loss.

avg: average degree in V */

Constructing R ; .
takes O(log n) depth

Subtracting R ;,, from
V takes O(1) depth

Assigning new ranks forall v in R, in parallel:
takes O(1) depth rank[v] = itr;
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d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss.
One can prove that
R,;, forms a constant
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— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss.
One can prove that
R,;, forms a constant
Constructing R . ingle j : fraction of all vertices
min

takes O(log n) depth

Subtracting R ;,, from
V takes O(1) depth

Assigning new ranks forall v in R, in parallel:
takes O(1) depth rank[v] = itr;
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V: set of all vertices,

- Key idea: try a relaxation of the strict degeneracy j(v? :asgﬁ’gzz jzgie\éezﬁe\); \,:;

avg®

order, at the cost of (some) accuracy loss.
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy ADG: approximate

order: degeneracy order:
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Approximate degeneracy ordering /* n: the number of all vertices
V: set of all vertices,

- Key idea: try a relaxation of the strict degeneracy j(v? :asgf’:’;g: gggie\éezﬁe\); X;

avg*
order, at the cost of (some) accuracy loss.

Strict degeneracy ADG: approximate

order: degeneracy order:

Work: O(n+m)
Depth: O(n)
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy ADG: approximate
order: degeneracy order:

Work: O(n+m) Work: O(n+m)
Depth: O(n) Depth: O(log? n)
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

Strict degeneracy ADG: approximate
order: degeneracy order:

Work: O(n+m) Work: O(n+m)
Depth: O(n) Depth: O(log? n)
Approximation: 2(1+£)
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.
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heuristic uses the orderings
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Let’s see how the coloring = ¢ used by the neighbors of v;;

heuristic uses the orderings assign c to v;;
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Parallel graph coloring heuristics for each vertex v; in (v; .. v;):
, find smallest color c not
Let’s see how the coloring = ¢ used by the neighbors of v;;
heuristic uses the orderings assign c to v;;

- The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors
that are ordered higher than v (d is G’s degeneracy).
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Parallel graph coloring heuristics for each vertex v; in (v; .. v;):
, find smallest color c not
Let’s see how the coloring = ¢ used by the neighbors of v;;
heuristic uses the orderings assign c to v;;

- The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors
that are ordered higher than v (d is G’s degeneracy).

A degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics for each vertex v; in (v, .. v ):
find smallest color c not

Let’s see how the coloring = ¢ used by the neighbors of v;;
heuristic uses the orderings assign c to v;;

- The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors
that are ordered higher than v (d is G’s degeneracy).

A degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics for each vertex v; in (v; .. v;):
- find smallest color c not
Let’s see how the coloring = ¢ used by the neighbors of v;;
heuristic uses the orderings assign c to v;;

- The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors
that are ordered higher than v (d is G’s degeneracy).

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the right”

A degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics for each vertex v; in (v; .. v;):
, find smallest color c not
Let’s see how the coloring = ¢ used by the neighbors of v;;
heuristic uses the orderings assign c to v;;

- The degeneracy ordering of a given graph is an
ordering, where each vertex v has at most d neighbors
that are ordered higher than v (d is G’s degeneracy).

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the right”

Using the strict degeneracy ordering,
we get at most d+1 colors

A degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

Color vertices one by one,
assigning a lowest color
not used by the neighbors

,on the right”
—

4

aCn = OO —@

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

In the ADG ordering, each
vertex v has at most 2(1+€)d
neighbors that are ordered
higher than v

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the right”

\o @]

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

In the ADG ordering, each
vertex v has at most 2(1+€)d
neighbors that are ordered
higher than v

Using ADG, we get
at most 2(1+€)d + 1
colors

Color vertices one by one,
assigning a lowest color
not used by the neighbors

,on the right”
—

5

\0 1 a \O —_‘\O

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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. ° ° k . :
Parallel graph coloring heuristics + ADG /* ni number of vertices,
m: number of edges,
A: maximum vertex degree,
d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1

A+1
d+ 1

)
“Largest degree first” No general bounds; €2(A?) for some graphs O(n +m)
)
Random O(n+m) TA+1
)
)
)

“Smallest degree last” No general bounds; €2(n) for some graphs O(n+m
Random O(n+m A+1
“Largest log-degree first” O(n+m A+1

“Smallest log-degree last” O(n+m A+1
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Parallel graph coloring heuristics + ADG /* ni number of vertices,

m: number of edges,

A: maximum vertex degree,

d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
Random O(n +m) A+ 1
Random O(n + m) A+1
“Largest log-degree first” O(n +m) A+1
“Smallest log-degree last” O(n + m) A+1

ADG
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Parallel graph coloring heuristics + ADG /* ni number of vertices,

m: number of edges,

A: maximum vertex degree,

d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
Random O(n +m) A+ 1
Random O(n + m) A+1
“Largest log-degree first” O(n +m) A+1
“Smallest log-degree last” O(n + m) A+1

ADG 2(1+¢e)d+1



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Parallel graph coloring heuristics + ADG

Ordering

: humber of vertices,

: number of edges,

: maximum vertex degree,
: graph’s degeneracy */

Q B> =3 5

Depth Work Quality

“First fit” (i.e., any order)
“Largest degree first”
“Smallest degree last”

Random

Random
“Largest log-degree first”

“Smallest log-degree last”
ADG

A+1
A+1
d+ 1
A+1

No general bounds; €2(n) for some graphs
No general bounds; €2(A?) for some graphs

No general bounds; £2(n) for some graphs

A+1

A+1

A+1
21+¢e)d+1
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In the ADG ordering, each
vertex v has at most 2(1+€)d
neighbors that are ordered
higher than v

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the right”

\o @]

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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In the ADG ordering, each We consider a DAG imposed
vertex v has at most 2(1+€)d over the input graph G, with

neighbors that are ordered directions assigned based on
higher than v the used vertex ordering

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the right”

=

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph



v ewien ETHzUrich
[1] W. Hasenplaugh, T. Kaler, T. B. Schardl|, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring”. SPAA’14.

Parallel graph coloring heuristics + ADG

In the ADG ordering, each We consider a DAG imposed Now, it was proved that
vertex v has at most 2(1+€)d over the input graph G, with a parallel coloring

neighbors that are ordered directions assigned based on heuristics runsin O(|P]|

higher than v the used vertex ordering log A + log n) depth and
O(n+m) work [1].

Color vertices one by one,

assigning a lowest color

not used by the neighbors
,on the rlght”

s —®

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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[1] W. Hasenplaugh, T. Kaler, T. B. Schardl|, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring”. SPAA’14.

Parallel graph coloring heuristics + ADG

In the ADG ordering, each
vertex v has at most 2(1+€)d
neighbors that are ordered
higher than v

We consider a DAG imposed Now, it was proved that
over the input graph G, with a parallel coloring

directions assigned based on heuristics runsin O(|P]|

the used vertex ordering log A + log n) depth and
O(n+m) work [1].

Whatis |P]| Color vertices one by one,

when using assigning a lowest color

not used by the neighbors
,on the rlght”

s —®

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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[1] W. Hasenplaugh, T. Kaler, T. B. Schardl|, and C. E. Leiserson,

Parallel graph COIO"ng heuristics + ADG “Ordering heuristics for parallel graph coloring”. SPAA’14.

In the ADG ordering, each We consider a DAG imposed Now, it was proved that
vertex v has at most 2(1+€)d over the input graph G, with a parallel coloring

neighbors that are ordered directions assigned based on heuristics runsin O(|P]|
higher than v the used vertex ordering log A + log n) depth and
O(n+m) work [1].

What is |P| Let’s see some Color vertices one by one,

when using intuition assigning a lowest color

not used by the neighbors
,on the rlght”

s —®

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

SN

2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

Vertices with the same ADG rank form
subgraphs

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

Vertices with the same ADG rank form

subgraphs

e

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph

@
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Parallel graph coloring heuristics + ADG

Vertices with the same ADG rank form
subgraphs

Analyze |P| by analyzing the lengths
of its parts, going via each subgraph

Y=

2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

Vertices with the same ADG rank form By ADG, each vertex has a bounded
subgraphs degree in each subgraph

Analyze |P| by analyzing the lengths
of its parts, going via each subgraph

=~

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics + ADG

Vertices with the same ADG rank form By ADG, each vertex has a bounded
subgraphs degree in each subgraph

Analyze |P| by analyzing the lengths “There is only as far (constant) as
of its parts, going via each subgraph you can go in a subgraph”

=~

A 2(1+¢)-approximate degeneracy ordering of a 3-degenerate graph
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Parallel graph coloring heuristics /* ni number of vertices,

m: number of edges,

A: maximum vertex degree,

d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
Random O(n +m) A+ 1
Random O(n + m) A+1
“Largest log-degree first” O(n +m) A+1
“Smallest log-degree last” O(n + m) A+1

ADG @ @ 21 +e)d+1
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Parallel graph coloring heuristics /* ni number of vertices,

m: number of edges,

A: maximum vertex degree,

d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
Random O(n +m) A+ 1
Random O(n + m) A+1
“Largest log-degree first” O(n +m) A+1
“Smallest log-degree last” O(n + m) A+1

2
ADG E O (log2 n + log A - (dlogn + 1oig-11§ggnn)) On+m) [2(1+e)d+1
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Parallel graph coloring heuristics /7 ninumber of ‘éjgzices’

A: maximum vertex degree,

d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1

logn
Random EO (k) O(n+m) [A+1
Random E O (logn + log A - min {\/ﬁ, A+ lﬁig’ﬁl;ggx" }) O(n 4+ m) A+1
“Largest log-degree first” [E O (10g n + log A - (min {A, /m} + loiéolilgoin )) O(n + m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgjgi:in)) O(n + m) A+1
2
ADG E O (log2 n + log A - (dlog n + 1oig-11§ggnn)) On+m) [2(1+e)d+1
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Parallel graph coloring heuristics /7 ninumber of ‘e’jgzices’
A: maximum vertex degree,
d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
logn
Random EO (k) O(n+m) [A+1
Random E O (logn + log A - min {\/ﬁ, A+ lﬁig’ﬁl;ggx" }) O(n 4+ m) A+1
“Largest log-degree first” [E O (10g n + log A - (min {A, /m} + loiéolilgoin )) O(n + m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgjgi:in)) O(n + m) A+1
},/ 2
ADG E O (log2 n + log A - (dlog n + 1oig-11§ggnn)) On+m) [2(1+e)d+1
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Parallel graph coloring heuristics /7 ninumber of ‘éj;zices’
A: maximum vertex degree,
d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
logn
Random EO(logﬁ)gn) O(n+m) [A+1
Random (log n + log A - min {\/_ A + lﬁig’ﬁl;;gnn }) O(n 4+ m) A+1
“Largest log-degree first” (log n + log A - (mln {A,\/m} + 1O%Ogilgoin )) O(n +m) A+1
“Smallest log-degree last” ( og A log n + log A - (min {A,/m} + lolgjgi:ﬁ,”)) O(n+m) A+1

RPN
ADG E O (log n —|— log A - (dlogn + lolgog’ llgggnn)) On+m) [2(1+e)d+1
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Parallel graph coloring heuristics /7 ninumber of ‘e’jgzices’
A: maximum vertex degree,
d: graph’s degeneracy */
Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs On+m) d+1
logn
Random EO (k) O(n+m) [A+1
Random E O (logn + log A - min {\/ﬁ, A+ k{ig’&léggnn }) O(n 4+ m) A+1
“Largest log-degree first” [E O (10g n + log A - (min {A, /m} + 1‘3’1%;?)1;1%” )) O(n + m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A, \/‘n_y'lolgjgi:ﬁn)) O(n +m) A+1
},/ 2
ADG E O (log2 n + log A - (dlog n + 1oig-11§ggnn)) On+m) [2(1+e)d+1
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Parallel graph coloring heuristics /7 ninumber of ‘e’jgzices’

A: maximum vertex degree,
d: graph’s degeneracy */
Anything else?

Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) [A+1
“Largest degree first” No general bounds; €2(A?) for some graphs On+m) [A+1
“Smallest degree last” No general bounds; ©2(n) for some graphs O(n+m) d+1

logn
Random EO (k) O(n+m) [A+1
Random E O (logn + log A - min {\/_ A+ lﬁgg’ﬁl;gan }) O(n 4+ m) A+1
“Largest log-degree first” [E O (10g n + log A - (min {A, /m} + loio’ogig)i” )) O(n + m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A, \/‘_}/vlolgogi:in)) O(n +m) A+1
ADG @ EO(log2n+logA- (dlogn—l—lolgogllgggnn)) @ On+m) [2(1+e)d+1
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- Construct the ADG-

induced partitioning
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— Construct the ADG-
induced partitioning
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— Construct the ADG- - Now, color each partition independently (“speculative
induced partitioning coloring”)
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— Construct the ADG- - Now, color each partition independently (“speculative
induced partitioning coloring”)
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— Construct the ADG- - Now, color each partition independently (“speculative
induced partitioning coloring”)
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— Construct the ADG- - Now, color each partition independently (“speculative
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— Construct the ADG- - Now, color each partition independently (“speculative
induced partitioning coloring”)

— Any coloring ,,conflicts” (vertices with
the same colors) are by repeating the
coloring on conflicting vertices as

— Each such partition is “low-degree”: it has
a bounded number of edges to any other
such partitions (by the definition of ADG)

many times as needed
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Parallel graph coloring heuristics

Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) A+1
“Largest degree first” No general bounds; ©2(A?) for some graphs On+m) A+1
“Smallest degree last” No general bounds; 2(n) for some graphs O(n+m) d+1
logn
Random EO () O(n+m) A+1
Random EO(logn—l—logA-min{\/ﬁ,A—l— %}) O(n +m) A+1
“Largest log-degree first” E O (logn + log A - (min {A,\/m} + 1olg02gi1go§n )) O(n +m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgozgilgoﬁn)) On+m) A+1

10 2 n
ADG (scheduling)  EO (log n+logA - (dlogn + BELE 1)) O(n+m) 20+e)d+1
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Parallel graph coloring heuristics

Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) A+1
“Largest degree first” No general bounds; 2(A?) for some graphs On+m) A+1
“Smallest degree last” No general bounds; 2(n) for some graphs O(n+m) d+1

log n
Random E O (1og1gogn) On+m) A+1
Random Eo(logn+1oga-min{\/a,A+ %}) O(n+m) A+1
“Largest log-degree first” E O (logn + log A - (min {A,v/m} + lolgozgi)lgoﬁn )) On+m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgjgi;oﬁ”)) On+m) A+1
) log d-log?
ADG (scheduling) EO (10g2 n +log A - (d logn + =57 1;’5””)) O(n+m) 2(1+e)d+1
ADG (speculative) O (log dlog® n) w.h.p. O(n+m) (2+¢)d

ADG (speculative) O (I -dlogn) ' 2(1 +&)d + 1
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& ) & 6708 speculative variants)

“Smallest degree last” “Smallest log-degree last”
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Evaluation

Comparison targets: 16 algorithms

“First fit” (i.e., any order)  Random
(scheduling and

“Largest degree first” “Largest log-degree first” ) .
& ) & 6708 speculative variants)

“Smallest degree last” “Smallest log-degree last”

Taken from four libraries / codes

Colpack [1] B Zoltan [2] B GBBS/Ligra [3]

[1] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen, “Colpack: Software for graph coloring and related problems in scientific computing”. TOMS’13.

[2] D. Bozdag, A. H. Gebremedhin, F. Manne, E. G. Boman, and U. V. © Catalyurek, “A framework for scalable greedy coloring on distributedmemory parallel computers”. JPDC’08.
[3] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient parallel graph algorithms can be fast and scalable” . SPAA’18.

[4] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson, “Ordering heuristics for parallel graph coloring”. SPAA’14.
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Runtime & quality analysis Larger graphs, 230M edges (used in offline data analytics)
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Scaling

Weak scaling (Kronecker graphs)
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Scaling
Weak scaling (Kronecker graphs)
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Conclusion .

Novel parallel graph
coloring algorithms,
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classes of heuristics
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— They almost always *:-’; o S
offer superior coloring ' %
quality

— Their runtimes are comparable or marginally
higher than others (in the speculative class) and
within 1.1 — 1.5x (in the scheduling class)
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Conclusion

Novel parallel graph
coloring algorithms,
enhancing two established =%

classes of heuristics -> The only routines with non-

trivial theoretical guarantees on
— They almost always

offer superior coloring
quality

!
work and depth and quality '

RERE0 o SO S . VAN
R4

. (] b "3
—> Their runtimes are comparable or marginally - -

higher than others (in the speculative class) and
within 1.1 — 1.5x (in the scheduling class)
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Graph degeneracy: an example

This graph has

' degeneracy of 3

/ ' Once a subgraph gets
smaller, the degree

\ becomes smaller than 3

anyway (as one
considers induced
subgraphs)

Despite the high-degree vertex, each induced subgraph with
this vertex contains some other vertex with degree at most 3
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

Q B> =3 5

: humber of vertices,

: number of edges,

: maximum vertex degree,
: graph’s degeneracy */
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How to derive the degeneracy ordering?
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“Smallest degree last”: fundamentals /7 ninumber of ;’jgzices’
A: maximum vertex degree,
—> Iterate over vertices in the degeneracy ordering d: graph’s degeneracy */

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.




spcl.inf.ethz.ch CER
v e e EENH ZUrICh
: humber of vertices,
: number of edges,

: maximum vertex degree,
: graph’s degeneracy */

“Smallest degree last”: fundamentals /*

Q B> =3 5

—> Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest

degree, one by one.

Denvmg the ordering takes
O(n+m) work
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The corresponding coloring
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A: maximum vertex degree,
—> Iterate over vertices in the degeneracy ordering d: graph’s degeneracy */

How to derive the degeneracy ordering?

Simple: Sequentially remove vertices of smallest
degree, one by one.

Denvmg the ordering takes

Deriving the
O(n+m) work

ordering takes
O(n) depth (i.e., it
is inherently
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The corresponding coloring
heuristics takes O(n+m) work
and gives d+1 quality
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“Smallest degree last”: fundamentals

—> Iterate over vertices in the degeneracy ordering

How to derive the degeneracy ordering?

The corresponding

Simple: Sequentially remove vertices of smallest €S 1S

degree, one by one.

@Deriving the ordering takes
O(n+m) work

@The corresponding coloring
heuristics takes O(n+m) work
and gives d+1 quality
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derivation

Deriving the
ordering takes
O(n) depth (i.e., it
is inherently
sequential)
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: humber of vertices,
: number of edges,

: maximum vertex degree,
: graph’s degeneracy */

The corresponding
coloring heuristics is
thus bottlenecked by

the ordering
derivation
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“Smallest degree last”: fundamentals : :3232:: gi ‘e’j;ices’

: maximum vertex degree,
—> Iterate over vertices in the degeneracy ordering : graph’s degeneracy */

’ How to derive the degeneracy nrdarina?

e e Can we have both good °

degeneracy-based quality

: : : ~ coloring heuristics is
Simple: Sequentially remove ver 8 and low depth & work ?

the ordering
derivation

@Denvmg the ordering takes b/ Deriving the A The corresponding
O(n+m) work ordering takes coloring heuristics is
O(n) depth (i.e., it thus bottlenecked by
is inherently the ordering
sequential) derivation

@The corresponding coloring
heuristics takes O(n+m) work
and gives d+1 quality
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Approximate degeneracy ordering /* n: the number of all vertices
V: set of all vertices,

d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss.

One can prove that

R,;, forms a constant
fraction of all vertices

Rpzn = {v | d(v) < (1+€)d,g};

V=V \ R..;

forall v in R ;, in parallel:
rank[v] = itr;

++1itr;

10
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Approximate degeneracy ordering /* n: the number of all vertices

V: set of all vertices,
d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy
order, at the cost of (some) accuracy loss.

One can prove that
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Parallel graph coloring heuristics

Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; 2(n) for some graphs On+m) A+1
“Largest degree first” No general bounds; ©2(A?) for some graphs On+m) A+1
“Smallest degree last” No general bounds; 2(n) for some graphs O(n+m) d+1
logn
Random EO () O(n+m) A+1
Random EO(logn—l—logA-min{\/ﬁ,A—l— %}) O(n +m) A+1
“Largest log-degree first” E O (logn + log A - (min {A,\/m} + 1olg02gi1go§n )) O(n +m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgozgilgoﬁn)) On+m) A+1

10 2 n
ADG (scheduling)  EO (log n+logA - (dlogn + BELE 1)) O(n+m) 20+e)d+1
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Parallel graph coloring heuristics

Ordering Depth Work Quality
“First fit” (i.e., any order)  No general bounds; Q(n) for some graphs On+m) A+1
“Largest degree first” No general bounds; 2(A?) for some graphs On+m) A+1
“Smallest degree last” No general bounds; Q(n) for some graphs O(n+m) d+1

logn
Random E O (1og1gogn) On+m) A+1
Random EO(logn—l—logA-min{\/ﬁ,A—l— %}) O(n +m) A+1
“Largest log-degree first” E O (logn + log A - (min {A,\/m} + lofozgi)lgoﬁn )) O(n +m) A+1
“Smallest log-degree last” E O (log Alogn + log A - (min {A,/m} + lolgjgi};ﬁ”)) On+m) A+1
1.2
ADG (scheduling) ~ E O (log?n+logA - (dlogn + gdlean ) O(n+m) 20+e)d+1
ADG (scheduling) EO(log2n+logA- (dlogn—I— %)) O(n + m) 4d+1
mn m

ADG (speculative) O (logdlog*n) wh Ot m) 2+ o

ADG (speculative) 0 (log dlog? n) whp. O(E’;’;ipgl | o

ADG (speculative) O (I -dlogn) (w.h.p.)

2(1 +e)d+1
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Approximate degeneracy ordering /* n: the number of all vertices
V: set of all vertices,

d(v): degree of a vertex v,

d,g: average degree in V */

— Key idea: try a relaxation of the strict degeneracy

order, at the cost of (some) accuracy loss.

One can prove that

R,;, forms a constant
fraction of all vertices

Rpzn = {v | d(v) < (1+€)d,g};

V=V \ R..;

forall v in R ;, in parallel:
rank[v] = itr;

++1itr;
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