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“In the good old days physicists repeated each other’s
experiments, just to be sure. Today they stick to
FORTRAN, so that they can share each other’s

programs, bugs included.” — Edsger Dijkstra (1930-
2002), Dutch computer scientist, Turing Award 1972
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Reproducibility and replicability? Nature, May 2016
HAVE YOU FAILED TO REPRODUCE

= Reproducibility — get the exact results AN EXPERIMENT?

. Replicability _ repeat the effect/i nsig ht Most scientists have experienced failure to reproduce results.
® Someone else’'s & My own
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Functional reproducibility is relatively simple — release the code!

docker

s
jupyter

Notebook

Single-threaded, if you don’t care much about performance

Gets a bit more complex when you share parallel codes (IEEE 754 is not associative)

IPDPS’14

Designing Bit-Reproducible Portable High-Performance Applications*

Andrea Arteaga Oliver Fuhrer Torsten Hoefler
ETH Zurich, Switzerland Federal Office for Meteorology and Climatology ETH Zurich, Switzerland
andrea.arteaga@env.ethz.ch MeteoSwiss, Zurich, Switzerland htor@ethz.ch

oliver.fuhrer @meteoswiss.ch

Abstract—Bit-reproducibility has many advantages in the
context of high-performance computing. Besides simplifying
and making more accurate the process of debugging and
testing the code, it can allow the deployment of applications
on heterogeneous systems, maintaining the consistency of the
computations. In this work we analyze the basic operations
performed by scientific applications and identify the possible
sources of non-reproducibility. In particular, we consider the
tasks of evaluating transcendental functions and performing
reductions using non-associative operators. We present a set

runs is often of key importance in order to locate and
isolate bugs. Especially, when refactoring an application in
a way that the results should not change, reproducibility
can significantly ease testing. However, debugging is only a
secondary use-case for us. Many applications being run on
large, parallel high performance computing facilities simu-
late the behavior of complex and highly non-linear systems.
Prominent examples can be found in molecular dynamics or
weather and climate simulation. For example, for weather
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Figure 8. Performance comparison of conventional reduction performed
with MKL (Conv), single-sweep reduction with two levels (Single2), with
three levels (Single3) and double-sweep reduction with 1 level (Double 1)
on varying number of processes, each owning 229 double-precision values,
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Reproducing performance results is hard! Is it even possible?
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Replicating performance results is possible but rare! Make it the default?
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HPC Performance reproducibility —is it worth trying?
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finalist from before 20157

Interpretability: We call an experiment interpretable if it provides enough
information to allow scientists to understand the experiment, draw own
conclusions, assess their certainty, and possibly generalize results.
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How does Garth measure and report performance?

= We are all interested in High Performance Computing
= We (want to) treat it as a science — reproducing experiments is a major pillar of the scientific method

_ _ _ Garth is a young,
= When measuring performance, |mportant questlons are inexperienced and

» “How many iterations do | have to run per measurement?” very smart student
» “How many measurements should | run?”

= “Once | have all data, how do | summarize it into a single number?”
= “How do | compare the performance of different systems?”
» “How do | measure time in a parallel system?”

= How are they answered in the field today?
= Young scientists ask their advisors ... who typically answer based on some intuition
= We (the community) need to establish scientific principles for benchmarking
But do we not already have them — let’s see ...
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State of the Practice in HPC

= Stratified random sample of three top-conferences over four years
= HPDC, PPoPP, SC (years: 2011, 2012, 2013, 2014)
= 10 random papers from each (10-50% of population)
= 120 total papers, 20% (25) did not report performance (were excluded)

= Main results:
1. Most papers report details about the hardware but fail to describe the software environment.
Important details for reproducibility missing
2. The average paper’s results are hard to interpret and easy to question
Measurements and data not well explained
3. No statistically significant evidence for improvement over the years ®

= Qur main thesis:

Performance results are often nearly impossible to reproduce! Thus, we need to provide enough
information to allow scientists to understand the experiment, draw own conclusions, assess their

certainty, and possibly generalize results.

This is especially important for HPC conferences and activities such as the Gordon Bell award!
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Well, we all know this - but do we really know how to fix it?

1991 — the classic!

= Twelve Ways to Fool the Masses When Giving
ﬁya Performance Results on Parallel Computers

2012 — the shocking i
Abstract H O 2013 — the extension

Many of us P|tfa| . I .
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Results: Old Classics & Some New Ideas Sl | e

Gerhard Wellein®?), Georg Hager®@

MDepartment for Computer Science == — .
= S===5=__= UNIVERSITAT

(@Erlangen Regional Computing Center E ST === EALANGEN-NURNBERG
Friedrich-Alexander-Universitit Erlangen-Niirnberg St
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Our constructive approach: provide a set of (12) rules

=  Attempt to emphasize interpretability of performance experiments
= The setis not complete

= And probably never will be

» [ntended to serve as a solid start

= Call to the community to extend it

= | will illustrate the 12 rules now
» Using real-world examples
All anonymized!
» Garth and Eddie will represent the naive/good scientist
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The most common issue: speedup plots
e . | can'’t tell if
Check out my Y ECHEE RS B s s useu
wonderful - 1o at alll
Speedup! o et '
5 60 | (- ‘;:;.‘;.;;g,’..‘,.
C% 40 | = )
20 1 Isa,.».—.;:g? =
O HENE
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Number of CPUs

= Most common and oldest-known issue
= First seen 1988 — also included in Bailey’s 12 ways
= 39 papers reported speedups
15 (38%) did not specify the base-performance &
» Recently rediscovered in the “big data” universe
A. Rowstron et al.: Nobody ever got fired for using Hadoop on a cluster, HotCDP 2012

F. McSherry et al.: Scalability! but at what cost?, HotOS 2015

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 1: When publishing parallel speedup, report if the base
case Is a single parallel process or best serial execution, as
well as the absolute execution performance of the base case.

= A simple generalization of this rule implies that one should never report ratios without
absolute values.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 2: Specify the reason for only reporting subsets of
standard benchmarks or applications or not using all system
resources.

= This implies: Show results even if your code/approach stops scaling!

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 3: Use the arithmetic mean only for summarizing costs.
Use the harmonic mean for summarizing rates.

Rule 4: Avoid summarizing ratios; summarize the costs or
rates that the ratios base on instead. Only if these are not
available use the geometric mean for summarizing ratios.

= 51 papers use means to summarize data, only four (!) specify which mean was used
= Asingle paper correctly specifies the use of the harmonic mean
= Two use geometric means, without reason

= Similar issues in other communities (PLDI, CGO, LCTES) — see N. Amaral’s report
= harmonic mean < geometric mean < arithmetic mean

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 5: Report if the measurement values are deterministic.
For nondeterministic data, report confidence intervals of the
measurement.

= Most papers report nondeterministic measurement results
= Only 15 mention some measure of variance
= Only two (!) report confidence intervals

= Cls allow us to compute the number of required measurements!

= Can be very simple, e.g., single sentence in evaluation:
“We collected measurements until the 99% confidence interval was within 5% of our reported means.”

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 6: Do not assume normality of collected data (e.g.,
based on the number of samples) without diagnostic checking.

= Most events will slow down performance
= Heavy right-tailed distributions

= The Central Limit Theorem only applies asymptotically
= Some papers/textbook mention “30-40 samples”, don’t trust them!

= Two papers used Cls around the mean without testing for normality

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Dealing with non-normal data — nonparametric statistics

= Rank-based measures (no assumption about distribution)
» Essentially always better than assuming normality

= Example: median (50t percentile) vs. mean for HPL
» Rather stable statistic for expectation
= Other percentiles (usually 25t and 75™) are also useful
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TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15 Completlon Tlme (S)
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Rule 7: Compare nondeterministic data in a statistically sound
way, e.g., using non-overlapping confidence intervals or ANOVA.
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Thou shalt not trust your system!

Look what \ ] Piz Dora
data | got! - Min: 1.57 ~ Median Arithmetic Mean
‘ ’ 6- Max:7.2 [— 2~ ol
99% Cl (Mean)
\ | |
| | o
99% Cl{Median)
1.7 1.8 1.9 2.0
Pilatus
Median _ Arithmetic Mean
N — /

Clearly, the

mean/median are

. . ‘ 99% Cl (Mean)
not sufficient! 99% ClI (Median) <"

\H

Try quantile - e : , : - —

Nl : . 1.7 1.8 1.9 2.0
regression! Time

De Sensi et al.: An In-Depth Analysis of the Slingshot Interconnect, IEEE/ACM SC20
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Rule 8: Carefully investigate if measures of central tendency
such as mean or median are useful to report. Some problems,
such as worst-case latency, may require other percentiles.

= Check Oliveira et al. “Why you should care about quantile regression”. SIGARCH
Computer Architecture News, 2013.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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How many measurements are needed?

= Measurements can be expensive!
» Yet necessary to reach certain confidence

= How to determine the minimal number of measurements?
= Measure until the confidence interval has a certain acceptable width
» For example, measure until the 95% CI is within 5% of the mean/median
= Can be computed analytically assuming normal data
= Compute iteratively for nonparametric statistics

= Often heard: “we cannot afford more than a single measurement”
= E.g., Gordon Bell runs
= Well, then one cannot say anything about the variance
Even 3-4 measurement can provide very tight Cl (assuming normality)
Can also exploit repetitive nature of many applications

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 9: Document all varying factors and their levels as well
as the complete experimental setup (e.g., software, hardware,
techniques) to facilitate reproducibility and provide
interpretability.

= We recommend factorial design

Consider parameters such as node allocation, process-to-node mapping, network or
node contention

= |f they cannot be controlled easily, use randomization and model them as random variable

= This is hard in practice and not easy to capture in rules

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15



Fgosen  ETHzUrich

Time in parallel systems

That's nonsense!
My simple
broadcast takes
only one latency!

But | measured it N e y ,'_'_.A'.; ,.'.'...’.‘ y f.'...‘.‘ AR WR— I—
so it must be true! : . ;

........................ i /"' /"l ,"" ""' R T TR — T— Measure each
t = -MP1_Wtime(); | TS S SR I (SR ey o e operation
for(i=0; 1<1000; i++) { ol et & ol () IO N NN | separately!

MPI_B s); N s R s
\ _Bcast(...) T T T

t += MPI_Wtime(); Bcast 1 Bcast 3 Bcast 5 end 1 end 3 end 5
t/= 1000; Bcast 2 Bcast 4 end 2 end 4
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Rule 10: For parallel time measurements, report all
measurement, (optional) synchronization, and summarization
techniques.

= Measure events separately
» Use high-precision timers
= Synchronize processes

= Summarize across processes:
» Min/max (unstable), average, median — depends on use-case

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 11: If possible, show upper performance bounds to
facilitate interpretability of the measured results.

= Model computer system as k-dimensional space
= Each dimension represents a capability
Floating point, Integer, memory bandwidth, cache bandwidth, etc.
» Features are typical rates
= Determine maximum rate for each dimension
E.g., from documentation or benchmarks

= Can be used to proof optimality of implementation
= |f the requirements of the bottleneck dimension are minimal

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Rule 12: Plot as much information as needed to interpret the
experimental results. Only connect measurements by lines if
they indicate trends and the interpolation is valid.

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Wrapping up the 12 rules ...

= Attempt to emphasize interpretability of performance experiments
= Teach some basic statistics Nature, 2016

_ WHAT FACTORS COULD BOOST
= The set of 12 rules is not complete REPRODUCIBILITY?

= And probably never will be Respondents were positive about most proposed improvements
) but emphasized training in particular.
» |ntended to serve as a solid start

_ _ ® Very likely Likely
= Call to the community to extend it : ;

Better understanding
of statistics

Better mentoring/supervision
Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results More robust design

Better teaching

Torsten Hoefler Roberto Belli
Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich N . :
Zurich, Switzerland Zurich, Switzerland More within-lab validation
htor@inf.ethz.ch bellir@inf.ethz.ch
ABSTRACT Reproducing experiments is one of the main principles of the sci- |ncent|ves fOT better praCtlce

entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler. the

Measuring and reporting performance of parallel computers con-

Incentives for formal
reproduction

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Conclusions and call for action

= Performance may not be reproducible
= At least not for many (important) results

= Interpretability fosters scientific progress
= Enables to build on results
= Sounds statistics is the biggest gap today

= We need to foster interpretability
= Do it ourselves (this is not easy)
= Teach young students
= Maybe even enforce in TPCs

= Seethe 12 rules as a start
_ = ETH’s mathematics department (home of R)
* Need to be extended (Or Concretlzed) = Hans Rudolf Kiinsch, Martin Maechler, and Robert Gantner

= Much is implemented in LibSciBench [1] = Comments on early drafts

’ N
@

No vegetables were harmed for creating these slides!

Acknowledgments

= David H. Bailey, William T. Kramer, Matthias Hauswirth, Timothy
Roscoe, Gustavo Alonso, Georg Hager, Jesper Traff, and Sascha
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= Help with HPL run
[1]: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/. = Gilles Fourestier (CSCS) and Massimiliano Fatica (NVIDIA)
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How to NOT benchmark machine/deep learning workloads

“Twelve ways to fool the masses when reporting performance of deep learning workloads”
(my humorous guide to floptimize deep learning, blog post, see URL below)

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/



Fgosen  ETHzUrich

“Statistical performance” vs. “hardware performance” ¢ratisTICS

DONE WRONG
= Tradeoffs between thosetwo  suwoe RUer Moo dere auinE

» Very unusual for HPC people — we always operated in double precision
Mostly out of fear of rounding issues

= Deep learning shows how little accuracy one can get away with
= Well, examples are drawn randomly from some distribution we don’t know ...
= Usually, noise is quite high ...
= So the computation doesn’t need to be higher precision than that noise
Pretty obvious! In fact, it’s similar in scientific computing but in tighter bounds and not as well known

= But we HPC folks like flop/s! Or maybe now just ops or even aiops? Whatever, fast
compute!

= A humorous guide to floptimization
= Twelve rules to help present your (not so great?) results in a much better light
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1) Ignore accuracy when scaling up!
HPC picking
= Too obvious for this audience up!

= Was very popular in 2015!

—eo— Median 25th/75th Percentile <--- Min/Max
= Surprisingly many (still) do this O
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2) Do not report test accuracy!

= Training accuracy is sufficient isn’t it?

— - Tralning error

lUnderfitting zone |Overfitting zone T
— Generalization error

Error

. . ——
T — — — — — — — — —

0 Optimal Capacity Source: quora.com

34
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3) Do not report all training runs needed to tune hyperparameters!

= Reportthe best run — SGD is a bit fragile, so don’t wo
At the end, the minutes for the final run matter most!

" Observed model ~©O.
o o 4
o performance

Your model

Suggested
Hyperparameters



Fgosen  ETHzUrich

4) Compare outdated hardware with special-purpose hardware!

= Tesla K20 in 2018!?
Even though the older machines would win the beauty contest!

VS.

36
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5) Show only kernels/subsets when scaling!

= Run layers or communication kernels in isolation
= Avoids issues with accuracy completely ©
Doesn’t that look a bit like GoogLeNet?
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6) Do not consider I/O!

= Reading the data? Nah, make sure it’s staged in memory when the benchmark starts!

INPUT 2 ouTPUT
o e \- ol j e
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/) Report highest ops numbers (whatever that means)!

= Yes, we’re talking ops today, 64-bit flops was so yesterday!
= |f we don’t achieve a target fast enough, let’s redefine it!
And never talk about how many more of those ops one needs to find a solution, it's all about the rate,
op/s!
= Actually, my laptop achieves an “exaop”:
= each of the 3e9 transistors switching a binary digit each at 2.4e9 Hz

' N ! 3
F ¢ ac D
¢ \ S

» NE

5

VS.
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8) Show performance when enabling option set A and show
accuracy when enabling option set B!

= Pretty cool idea isn’t it? Hyperparameters sometimes conflict
So always tune the to show the best result, whatever the result shall be!

Speedup O Utopia
64 O Excellent
Neat
55 O Good Accuracy
O So-so —
T — ac...
0 46 O Not Good
g - 97.95%
o £
g 37 % 97.85%
éL 28 ;
97.75%
B
o
97 .65%
“ 19 BATCH_SIZE=64 BATCH_SIZE=256
BATCH_SIZE=128 BATCH_SIZE=512
10

# of procs
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9) Train on (unreasonably) large inputs!

= The pinnacle of floptimization! Very hard to catch!
But Dr. Catlock Holmes below can catch it.

VS.

Low-resolution cat (244x244 — 1 Gflop/example)

High-resolution cat (8kx8k — 1 Tflop/example)
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10) Run training just for the right time! Eror

Validation set

= Train for fixed wall-time when scaling processors
= SO0 when you use twice as many processors you get twice as many flop/s!
But who cares about application speedup?

Training set
0 Early Number of
stopping iterations
point
I'VE BEEN GIVING YOU I SAID
THEA gi-:-{: %gg pgAVE INCORRECT DATA FOR WHAT? THE DATA
) YEARS. THIS IS THE FIRST IS TOTALLY
ME IS CORRECT?
TIME YOU'VE ASKED. ACCURATE.

L

/ULl

Dilbert.com DilbertCartoonist@gmail.com

5-7-14 ©2014 Scott Adams, Inc. /Dist. by Universal Uchick
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11) Minibatch sizing for fun and profit — weak vs. strong scaling.

= AllI DL is strong scaling — limited model and limited data

= S0 just redefine the terms relative to minibatches:
» \Weak scaling keeps MB size per process constant — overall grows (less iterations per epoch, duh!)
= Strong scaling keeps overall MB size constant (better but harder)

= Microbatching is not a problem!
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ImageNet top-1 validation error

n
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mini-batch size



Fgosen  ETHzUrich

12) Select carefully how to compare to the state of the art!

= Compare either time to solution or accuracy if both together don’t look strong!
There used to be conventions but let’s redefine them.

T™M NOT YOUR BUT YOU SPEND TWICE AS MUcH | YOUR MATH 1S
BOYFRIEND! TIME WITH ME AS WITH ANYONE | IRREFUTABLE.
ﬂEM;E;EﬂEW [ You TOTRLY ARE. ELSE. IM ACLAR OUTLER FACE IT—IM
| TM CAsvALLY YouR STATISTICALLY
\ DATING A NUMBER SIGNIFICANT OTHER.
OF PEOPLE. HH - )
RO q ) %
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Conclusions and call for action

= Performance may not be reproducible
= At least not for many (important) results

= Interpretability fosters scientific progress
= Enables to build on results
= Sounds statistics is the biggest gap today

= We need to foster interpretability
= Do it ourselves (this is not easy)
= Teach young students
= Maybe even enforce in TPCs

= Seethe 12 rules as a start
_ = ETH’s mathematics department (home of R)
* Need to be extended (Or Concretlzed) = Hans Rudolf Kiinsch, Martin Maechler, and Robert Gantner

= Much is implemented in LibSciBench [1] = Comments on early drafts
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