
Designing Databases for Future High-Performance Networks

Claude Barthels, Gustavo Alonso, Torsten Hoefler
Systems Group, Department of Computer Science, ETH Zurich

{firstname.lastname}@inf.ethz.ch

Abstract

High-throughput, low-latency networks are becoming a key element in database appliances and data
processing systems to reduce the overhead of data movement. In this article, we focus on Remote Direct
Memory Access (RDMA), a feature increasingly available in modern networks enabling the network
card to directly write to and read from main memory. RDMA has started to attract attention as a
technical solution to quite a few performance bottlenecks in distributed data management but there is
still much work to be done to make it an effective technology suitable for database engines. In this
article, we identify several advantages and drawbacks of RDMA and related technologies, and propose
new communication primitives that would bridge the gap between the operations provided by high-speed
networks and the needs of data processing systems.

1 Introduction

Distributed query and transaction processing has been an active field of research ever since the volume of the
data to be processed outgrew the storage and processing capacity of a single machine. Two platforms of choice
for data processing are database appliances, i.e., rack-scale clusters composed of several machines connected
through a low-latency network, and scale-out infrastructure platforms for batch processing, e.g., data analysis
applications such as Map-Reduce.

A fundamental design rule on how software for these systems should be implemented is the assumption that
the network is relatively slow compared to local in-memory processing. Therefore, the execution time of a query
or a transaction is assumed to be dominated by network transfer times and the costs of synchronization. However,
data processing systems are starting to be equipped with high-bandwidth, low-latency interconnects that can
transmit vast amounts of data between the compute nodes and provide single-digit microsecond latencies. In
light of this new generation of network technologies, such a rule is being re-evaluated, leading to new types of
database algorithms [6, 7, 29] and fundamental system design changes [8, 23, 30].

Modern high-throughput, low-latency networks originate from high-performance computing (HPC) systems.
Similar to database systems, the performance of scientific applications depends on the ability of the system to
move large amounts of data between compute nodes. Several key features offered by these networks are (i) user-
level networking, (ii) an asynchronous network interface that allows the algorithm to interleave computation and
communication, and (iii) the ability of the network card to directly access regions of main memory without going
through the processor, i.e., remote direct memory access (RDMA). To leverage the advantages of these networks,

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

15

new software interfaces and programming language extensions had to be designed [17, 25]. These interfaces and
languages not only contain traditional message-passing functionality, but also offer support for accessing remote
memory directly without any involvement of a remote process. The latter can be used to reduce the amount of
inter-process synchronization, as processes are not notified about remote memory accesses through the network
card. Having less synchronization between processes is crucial in order to scale applications to thousands of
processor cores. The downside is that using one-sided memory operations requires careful management of the
memory regions accessible over the network.

The impact of high-performance interconnects on relational database systems has been recently studied [6,
7, 8, 23, 29, 30]. While it has been shown that distributed algorithms can achieve good performance and scale to
a large number of cores, several drawbacks of the technology have also been revealed. In this article, we provide
a comprehensive background on remote direct memory access (RDMA) as well as several related concepts, such
as remote memory access (RMA) and partitioned global address space (PGAS). We investigate the role of these
technologies in the context of distributed join algorithms, data replication, and distributed transaction processing.
Looking ahead, we highlight several important directions for future research. We argue that databases and
networks need to be co-designed. The network instruction set architecture (NISA) [12, 18] provided by high-end
networks needs to contain operations with richer semantics than simple read and write instructions. Examples of
such operations are conditional reads, remote memory allocation, and data transformation mechanisms. Future
high-speed networks need to offer building blocks useful to a variety of data processing applications for them to
be truly useful in data management. In this article, we describe how this can be done.

2 Background and Definitions

In this section, we explain how the concepts of Remote Direct Memory Access (RDMA), Remote Memory
Access (RMA), and Partitioned Global Address Space (PGAS) relate to each other. Furthermore, we include an
overview of several low-latency, high-bandwidth network technologies implementing these mechanisms.

2.1 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a hardware mechanism through which the network card can directly
access all or parts of the main memory of a remote node without involving the processor. Bypassing the CPU and
the operating system makes it possible to interleave computation and communication, thereby avoiding copying
data across different buffers within the network stack and user space, which significantly lowers the costs of
large data transfers and reduces the end-to-end communication latency.

In many implementations, buffers need to be registered with the network card before they are accessible
over the interconnect. During the registration process, the memory is pinned such that it cannot be swapped out,
and the necessary address translation information is installed on the card, operations that can have a significant
overhead [14]. Although this registration process is needed for many high-speed networks, it is worth noting
that some network implementations also support registration-free memory access [10, 27].

RDMA as a hardware mechanism does not specify the semantics of a data transfer. Most modern net-
works provide support for one-sided and two-sided memory accesses. Two-sided operations represent tradi-
tional message-passing semantics in which the source process (i.e., the sender of a message) and the destination
process (i.e., the receiver of a message) are actively involved in the communication and need to be synchronized;
i.e., for every send operation there must exist exactly one corresponding receive operation. One-sided operations
on the other hand, represent memory access semantics in which only the source process (i.e., the initiator of a
request) is involved in the remote memory access. In order to efficiently use remote one-sided memory opera-
tions, multiple programming models have been developed, the most popular of which are the Remote Memory
Access (RMA) and the Partitioned Global Address Space (PGAS) concepts.

16

2.2 Remote Memory Access

Remote Memory Access (RMA) is a shared memory programming abstraction. RMA provides access to remote
memory regions through explicit one-sided read and write operations. These operations move data from one
buffer to another, i.e., a read operation fetches data from a remote machine and transfers it to a local buffer,
while the write operation transmits the data in the opposite direction. Data located on a remote machine can
therefore not be loaded immediately into a register, but needs to be first read into a local main memory buffer.
Using the RMA memory abstractions is similar to programming non-cache-coherent machines in which data
has to be explicitly loaded into the cache-coherency domain before it can be used and changes to the data have
to be explicitly flushed back to the source in order for the modifications to be visible on the remote machine.

The processes on the target machine are generally not notified about an RMA access, although many inter-
faces offer read and write calls with remote process notifications. Apart form read and write operations, some
RMA implementations provide support for additional functionality, most notably remote atomic operations.
Examples of such atomic operations are remote fetch-and-add and compare-and-swap instructions.

RMA has been designed to be a thin and portable layer compatible with many lower-level data movement
interfaces. RMA has been adopted by many libraries such as ibVerbs [17] and MPI-3 [25] as their one-sided
communication and remote memory access abstraction.

RDMA-capable networks implement the functionality necessary for efficient low-latency, high-bandwidth
one-sided memory accesses. It is worth pointing out that RMA programming abstractions can also be used over
networks which do not support RDMA, for example by implementing the required operations in software [26].

2.3 Partitioned Global Address Space

Partitioned Global Address Space (PGAS) is a programming language concept for writing parallel applications
for large distributed memory machines. PGAS assumes a single global memory address space that is partitioned
among all the processes. The programming model distinguishes between local and remote memory. This can
be specified by the developer through the use of special keywords or annotations [9]. PGAS is therefore usu-
ally found in the form of a programming language extension and is one of the main concepts behind several
languages, such as Co-Array Fortran or Unified Parallel C.

Local variables can only be accessed by the local processes, while shared variables can be written or read
over the network. In most PGAS languages, both types of variables can be accessed in the same way. It is the
responsibility of the compiler to add the necessary code to implement a remote variable access. This means that
from a programming perspective, a remote variable can directly be a assigned to a local variable or a register
and does not need to be explicitly loaded into main memory first as is the case with RMA.

When programming with a PGAS language, the developer needs to be aware of implicit data movement when
accessing shared variable data, and careful non-uniform memory access (NUMA) optimizations are required for
applications to achieve high performance.

2.4 Low-latency, High-bandwidth Networks

Many high-performance networks offer RDMA functionality. Examples of such networks are InfiniBand [19]
and Cray Aries [2]. Both networks offer a bandwidth of 100 Gb/s or more and a latency in the single-digit
microsecond range. However, RDMA is not exclusively available on networks originally designed for super-
computers: RDMA over Converged Ethernet (RoCE) [20] hardware adds RDMA capabilities to a conventional
Ethernet network.

17

3 RMA & RDMA for Data Processing Systems

Recent work on distributed data processing systems and database algorithms has investigated the role of RDMA
and high-speed networks [6, 7, 8, 23, 29, 30]. The low latency offered by these interconnects plays a vital role in
transaction processing systems where fast response times are required. Analytical workloads often work on large
volumes of data which need to be transmitted between the compute nodes and thus benefit from high-bandwidth
links. In this section, we investigate the advantages and disadvantages of RDMA in the context of a relational
database by analyzing three use-cases: (i) join algorithms, (ii) data replication, and (iii) distributed coordination.

3.1 Distributed Join Algorithms

Many analytical queries involve join operations in order to combine data from multiple tables. This operation
usually involves transmitting significant amounts of data between the compute nodes, and thus new network
technologies can improve the performance of the overall system.

Recent work on join algorithms for multi-core servers has produced hardware-conscious join algorithms
that exhibit good performance on multicore CPUs [1, 3, 4, 5]. These implementations make use of Single-
Instruction-Multiple-Data (SIMD) extensions and are NUMA-aware. In order to extend this work beyond the
scope of a single cache-coherent machine, we have augmented the partitioning phase of the radix hash join and
the sorting phase of the sort-merge join to redistribute the data over an RDMA-enabled network while it is being
processed at the same time, thus interleaving computation and communication [6, 7].

Radix hash join: The radix hash join is a partitioned hash join, which means that the input is first divided
into small partitions before hash tables are built over the data of each partition of the inner relation and probed
with the data from the corresponding partition of the outer relation. In order to create a large number of small
partitions and to avoid excessive TLB misses and cache trashing, a multi-pass partitioning scheme [24] is used.

Each process starts by creating a histogram over the input. The histogram tracks how many elements will
be assigned to each partition. These histograms are exchanged between all the processes and are combined into
a global histogram to which every process has access. From this information, the join operator can determine
an assignment of partitions to processes. This assignment can be arbitrary or such that it minimizes the amount
of network traffic [28]. During the first partitioning pass, we separate the data as follows: (i) tuples belonging
to local partitions (i.e., partitions which are assigned to the same node) are written into a local buffer, and
(ii) tuples which need to be transmitted over the network are partitioned into RDMA buffers. Careful memory
management is critical. First, we want to avoid RDMA memory registration costs during the join operation.
Therefore, we allocate and register the partitioning buffers at start-up time. Second, we want to interleave the
partitioning operation and the network communication. Therefore, the RDMA buffers are of fixed size (several
kilobytes) and are usually not large enough to hold the entire input. When one of these buffers is full, a network
transmission request is immediately created. Since the network processes these requests asynchronously, we
have to allocate at least two RDMA buffers for each partition and process. This double-buffering approach
allows the algorithm to continue processing while data is being transmitted over the network. The algorithm
needs (i) to ensure that data belonging to the same partition ends up in consecutive regions of memory, as
this simplifies further processing and improves data locality, and (ii) to use one-sided operations in order to
avoid unnecessary synchronization between the processes. To achieve these goals, the information from the
histogram is used. From the global histogram, each process knows the exact amount of incoming data and hence
can compute the required RDMA buffer size. The processes need to have exclusive access to sections of this
memory region. This can be done through a prefix sum computation over all the process-level histograms. Once
the partitions are created, hash tables can be constructed and probed in parallel to find all matching tuples.

Sort-merge join: The sort-merge join aims at interleaving sorting and data transfer. Similar to the radix hash
join, data is first partitioned into ranges of equal size and histograms indicating how many elements fall into each

18

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
h

ro
u

g
h

p
u

t
[1

0
9
 i

n
p

u
t

tu
p

le
s/

se
c]

Number of cores

Radix hash join
Sort-merge join

Figure 1: Distributed join algorithms can scale to hundreds of machines with thousands of CPU cores.

range are created. The process level histograms are combined into a global histogram. The range partitioning
is performed locally by each process. The number of partitions should be equal to the number of cores in order
to exploit the full parallelism offered by the machine. The partitioning step ensures that the data of the same
partition can be transmitted to the same target node. In order to sort the data, each process takes a subset of the
elements of each partition (several kilobytes) and sorts these elements. For sorting, we use an efficient out-of-
place in-cache sorting routine. The sorted output is stored in RDMA buffers and is immediately transmitted to
the destination. The process continues sorting the next elements without waiting for the completion notification
of the network transfer. Using this strategy, sorting and network communication are interleaved. On the target
node, the sorted runs end up consecutively in main memory. To avoid write-write conflicts, the information from
the histograms is used to calculate sections of exclusive access for each process. After the data has arrived on
the target node, the individual sorted runs are merged using a multi-level merge tree. After the merge operation,
the data has been range-partitioned across the compute nodes, and, within each partition, all elements are sorted.
A final pass over the sorted data finds the matching tuples.

Evaluation: We performed extensive evaluations of both algorithms on a rack-scale cluster and on two
high-end supercomputers [6, 7]. The high-performance computing (HPC) machines provide us with a highly-
tuned distributed setup with a high number of CPU cores, which allowed us to study the behaviour of joins in
future systems. Given the increasing demand for more compute capacity, i.e., multiple servers per rack, multiple
sockets per machine, multiple cores per socket, and multiple execution contexts per core, we estimate that future
rack-scale systems (e.g., database appliances) will offer thousands of processor cores with several terabytes of
main memory, connected by high-speed interconnects. In Figure 1, we observe that both algorithms can scale to
several thousands of CPU cores. Both hash- and sort-based algorithms achieve a high throughput at large scale.

From this result, we conclude that the asynchronous interface of modern networks can be used to implement
efficient hashing and sorting routines. Join processing and communication can be interleaved to a large extent.
In that context, RDMA can be used to hide parts of the remote memory access latency. However, our results also
indicate that a substantial part of the available capacity is not used. In order to further improve performance,
the network interface needs be extended such that information about the communication pattern can be pushed
down to the network card. Such information could be used by the hardware to improve decisions when to execute
the asynchronous data transfers. Both algorithms employ an all-to-all communication pattern, which could be
further optimized by introducing a light-weight network scheduling policy on the network card.

During the hashing and sorting operation, each process is working on its own set of input data. Using one-
sided RMA operations reduces the amount of synchronization in these phases, as the target process does not
need to be actively involved in the communication in order for the transfer to complete. However, the benefits of
RMA do not come for free, as they require upfront investment in the form of a histogram computation phase. The
global histogram data provides the necessary information to determine the size of the RDMA buffers and allows
the processes to compute offsets into these buffers for exclusive access. Although computing and exchanging

19

0

5k

10k

15k

20k

1 10 100 1000 2000T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

m
in

]

Number of analytical clients (AC)

Single Machine Setup (2 NUMA regions)
TC=0
TC=1

TC=10
TC=100

TC=1000
TC=2000

1 10 100 1000 2000

Number of analytical clients (AC)

Distributed Setup (2 machines)
TC=0
TC=1

TC=10
TC=100

TC=1000
TC=2000

Figure 2: BatchDB isolates workloads generated by analytical clients (AC) and transactional clients (TC)
through data replication. Cross-machine replication reduces interference and improves overall throughput.

these histograms can be done with great efficiency once the input is materialized, this process is difficult in a
query pipeline in which tuples are streamed through non-blocking operators. Therefore, future RMA systems
should extend their functionality beyond simple read and write operations. For example, an append operation,
which would sequentially populate a buffer with the content of different operations, would reduce the complexity
of the histogram computation phase. In addition, a remote memory allocation mechanism would eliminate the
requirement to compute the size of each RDMA buffer. Once an RDMA buffer is full, a remote process could
allocate new memory regions as needed.

3.2 Data Replication and Transformation

BatchDB [23] is a database engine designed to reduce the interference caused by hybrid workloads running in
the same system while maintaining strict guarantees with respect to performance, data freshness, consistency,
and elasticity. To that end, BatchDB uses multiple workload-specific replicas. These copies of the data can
either be co-located on the same machine or distributed across multiple compute nodes. Transactions operate
exclusively on a write-optimized version of the data, i.e., the primary copy. Updates to this component are
propagated to the satellite replicas. The replicas are responsible for converting the data into their respective
format, applying the updates, and signaling a management component that the updates have been applied. It is
worth noting that this design is not limited to traditional database workloads but can be extended to new kinds
of data processing, e.g., machine learning, by adding additional specialized replicas. In order to meet strict data
freshness requirements, low-latency communication is essential. Since the updates need to be propagated to all
replicas, having sufficient bandwidth on the machine hosting the primary copy is important.

In Figure 2, we observe that BatchDB maintains the performance of analytical queries in the presence of
transactional workloads, independent of whether the replicas are located on the same machine with two NUMA
regions or on two different machines (one replica per machine) where the updates are propagated through an
InfiniBand network. At the same time, the transactional throughput is maintained as more analytical queries are
executed [23]. We observe that the RDMA transfer does not negatively effect the performance of the system. In
fact, the distributed setup has a higher throughput as the system benefits from better workload isolation.

BatchDB uses a shared scan in its analytical component. The scan consists of an update and read pointer.
The update pointer is always ahead of the read pointer, which ensures that updates are first applied to the data
before it is read. Incoming updates and queries are queued while the scan is running. A new batch of updates and
queries is dequeued at the beginning of each scan cycle. Because the thread scanning the data is not involved
in the data transfer and the update propagation latency is lower than the scan cycle, the performance of the
analytical component can be maintained.

To keep the bandwidth requirements at a minimum, the transactional component only forwards the attributes
of the tuples that have changed. A reliable broadcast, a mechanism currently not offered by all networks and
interfaces, could speed up the update propagation process when multiple replicas are attached.

20

In BatchDB, both components use a row-store format. However, we expect that this will not to be the case
for future workload-specific replicas. To ensure that the system can be extended, it is the responsibility of each
replica to convert the change set, which is sent out in row-store format, to its internal representation. Given that
this transformation might involve a significant amount of processing, it could impact the performance of the
satellite component. To that end, we propose that future networking technology enables the destination node to
push down simple rewrite rules to the network card. The networking hardware should be able to change the data
layout while writing the incoming updates to main memory.

Low-latency data and state replication mechanisms have many applications. In BatchDB, replication is used
to achieve performance isolation of OLAP and OLTP workloads, but such a mechanism could also be used to
increase fault-tolerance and prevent data loss. Transforming data while it is transmitted is a general mechanism
which is useful to any system that requires different data formats during its processing.

3.3 Distributed Coordination

Distributed transaction processing requires cross-machine coordination and synchronization. Two fundamental
coordination mechanisms used in relational databases are (i) multiple granularity locking and (ii) multi version
concurrency control. Many RDMA implementations offer remote atomic compare-and-swap and fetch-and-add
operations. These operations can be used to implement a simple mutual exclusion semaphore. However, the
locking system of a database does not only rely on mutexes but uses a more sophisticated protocol.

In multiple granularity locking, locks are acquired on objects in a hierarchical way, i.e., before a lock can be
taken on an object, all its parent nodes need to be locked. In addition to shared and exclusive locks, these locking
protocols use intention shared and intention exclusive locks, which indicate that a transaction intends to acquire
shared, respectively exclusive, locks on one or more child nodes. Each lock consists of a request queue and a
granted group. The queue contains all pending requests which have not been granted, and the granted group is
the set of granted requests. The head element of the queue can be added to the granted group if it is compatible
with all the other lock types in the group. Locks should always be taken on the finest level of granularity possible
in order to favor parallelism and to enable as many concurrent data accesses as possible [15].

To use this locking scheme in a distributed system, one requires (i) an efficient way to add a new request
to a remote request queue and (ii) a method to check if the head of a queue is compatible with all the elements
in the granted group. The former can be implemented using a buffer into which the content (e.g., lock type,
requesting process id) of a new request will be written. A process finds a new slot in the buffer by issuing a
remote fetch-and-add operation to a tail counter. Once the operation has succeeded, the content is written to a
queue. For the latter, we need to avoid scanning through all the granted requests. Instead of materializing the
granted group in main memory, each lock contains a summary of the group state in the form of counters, one
counter per lock type. A process reads these counters to determine if there is at least one incompatible request
in the granted group. These counters are atomically updated whenever a requests enters or leaves the granted
group. In order to avoid polling on the head element of the queue and the lock counters, the check is performed
only when a new request is inserted into an empty queue and whenever a process releases a lock. The process
releasing a lock determines if the head element is compatible and notifies the corresponding process.

The drawback of the above approach is that multiple round trip times are required to acquire even uncon-
tended locks. Unless lock requests are issued ahead of time, the transaction or query is blocked and cannot
continue processing. Although the remote memory access latency is constantly improving (micro-second la-
tency), it is still significantly higher than the time required to access local memory (nano-second latency). In the
case of locking, slow memory access times lead to reduced application-level performance. This performance
problem is amplified through the hierarchy of the locks. To acquire a low-level lock, a process needs to be
granted a series of locks (i.e., the path from the root to the lock). Combined with the fact that multiple round-
trips are needed to acquire each lock, we expect the network latency and the message rate of the network card to
have a significant impact on performance.

21

Host 1 Host 2

pos

Fetch & add

Write

Host 1 Host 2

Append

(a) Remote append operations would enable efficient concurrent
accesses to the same buffer.

Tuple Attribute Value

1 a …

1 b …

2 c …

1.a 1.b 1.c 2.a 2.b 2.c 3.a 3.b 3.c

…

Tuples in main memory

Write command with type information
…

(b) Write operations with type information would enable more
sophisticated memory accesses.

Figure 3: RDMA operations with high-level semantics.

Having more advanced RMA operations at our disposal would simplify the implementation sketched above
and eliminate several round trips. As shown in Figure 3a, an append functionality would be useful to add new
requests to a remote queue. If simple comparisons could be pushed to the remote network card, the checks if
two requests are compatible could be executed directly on the node where the lock resides.

We expect locks at the top of the hierarchy to be more contended than low-level locks. Having a small
number of highly contended locks has been a significant problem in many high-performance computing (HPC)
applications. Schmid et al. [31] propose a combination of several data structures to implement scalable RMA
locks distinguishing between readers with shared access and writers needing exclusive access.

As an alternative to locking, snapshot isolation is used in many database engines. One advantage of this
approach is that queries, i.e., read-only transactions, do not need to be synchronized with other concurrent
transactions. Locks are only needed to resolve write conflicts at commit time. This advantage does not come
for free but requires careful memory management and version control. Following pointers to fetch a specific
version of a record can cause a significant amount of random remote memory accesses, which would lead to
poor performance. Instead, the memory needs to be laid out such that a remote process can compute the memory
location of a specific version of a record and retrieve it with a single request. Each query and transaction needs
to receive the current version number. When committing data, the snapshot number needs to be updated. Using
a global counter for managing the snapshot versions will be an inherent bottleneck of the system, as it represents
a point of synchronization. Timestamp vectors composed out of multiple snapshot numbers, one for each thread
executing the transaction or query, can be used to create a scalable timestamp oracle [32].

4 Future Research Directions

In this section, we look at the future development of these technologies and propose a set of network primitives
tailored to the needs of a data processing system. We argue that data processing systems and networks need to
be co-designed to facilitate data movement between compute nodes, while at the same time keeping the network
interface generic enough to support a variety of communication-intensive applications.

4.1 Fine-Grained Network Scheduling

When using RDMA, the operating system is not in control of the exact time when a data transfer is executed.
The application is often aware of the communication pattern, e.g., an approximate amount of data that needs
to be transmitted, and the nodes involved in the data exchange. In the case of join algorithms, the number
of exchanged tuples is determined through the histograms and the algorithm is aware that, in our experiment
setup, all nodes are involved in the communication. The sort-merge join uses a course-grained communication
schedule by first partitioning the data into ranges and then letting each process i start sorting at range i + 1,
resulting in a pairwise all-to-all communication pattern. This communication pattern reduces contention on both
the sender and receiver. However, with smaller ranges and a larger number of nodes, pairwise communication

22

without explicit synchronization becomes difficult to maintain. Furthermore, not every algorithm can schedule
its communication in a course-grained way. Maintaining synchronization for several thousand CPU cores with
thousands of small buffers requires having a light-weight scheduling mechanism.

Implementing such a scheduling mechanism at the application level is difficult, as the data transfer is exe-
cuted asynchronously by the network card. In order to enable the network to make fine-grained decisions when
to execute a data transfer, the application needs to push down information about the nodes involved in the com-
munication, the amount of incoming/outgoing data, and the granularity of the transmission, e.g., the average
buffer size used during the communication. Such an interface could be enhanced further with information about
the priority of the transmission and the required quality of service in terms of latency and bandwidth.

4.2 Advanced One-Sided Operations

Modern network implementations offer one-sided read and write operations as well as a hand-full of additional
operations (e.g., atomic operations). To facilitate the development of future systems, this set of operations needs
to be extended. The primitives offered by the network should be designed to meet the needs of a variety of data
processing applications. Such a Network Instruction Set Architecture (NISA) [12, 18] should contain operations
which manipulate, transform, and filter data while it is moving through the network.

For example, a conditional read operation (i.e., a read with conditional predicate) could be used to filter data
at the source and avoid transmitting unnecessary data entries. With the current state of the art, the entire content
of a remote buffer is fetched over the network before the processor can filter the data and copy only the relevant
entries. A conditional read operation on the other hand would drop elements as the data is flowing through the
remote network card. This would eliminate the need for a second pass over the data, lowering the overall CPU
costs of such a transfer-filter combination. A database would be able to push a selection operator directly into
the network. Furthermore, such operations would be crucial for systems using snapshot isolation, as the data
could also be filtered based on the snapshot number, making it straightforward to read consistent versions.

Many databases store their data in compressed format. On-the-fly compression and de-compression could
be done by the network card as data is read from or written back to remote memory, thus eliminating the CPU
overhead of compression, avoiding unnecessary copy operations, and reducing the overall storage requirements.
Such a functionality is not only important when accessing main memory, but also in systems where data is
directly accessed from persistent storage via one-sided operations, e.g., RDMA over fabrics.

As the data is passing through the network card, simple aggregation operations and histogram computations
can be performed on the fly. Recent work on database hardware accelerators has shown that database tables can
be analyzed as they are retrieved from persistent storage and histograms on the data can be computed at virtually
no extra performance cost [21]. Furthermore, network cards could be used to offload many data redistribution
operations, e.g., the radix partitioning of the hash join can be implemented in hardware [22].

Synchronizing multiple processes intending to add data to the content of a common buffer is a difficult task
often involving multiple network operations or extensive processing. As explained in Section 3.3, adding a
new lock request to a list requires acquiring a free slot, followed by a write operation which places the data
in that memory location. Both join algorithms use a global histogram computation which allows the processes
to compute the location of memory sections into which each process can write exclusively. Having a modified
write operation that does not place data at a specific memory address, but rather appends it next to the content
of a previous operation would improve performance and reduce application complexity.

One-sided read and write instructions are unaware of the data type they are operating on. However, many
analytical queries are only interested in specific attributes of a tuple. Having data stored in column-major format
is useful, as the operator only needs to access the specific memory regions where the desired attributes are
stored. In a row-major format, data belonging to the same tuple is stored consecutively in memory. Although
the majority of networks offer gather-scatter elements, in large databases, it is not feasible to create one gather-
scatter element for each individual tuple. Specifying a data layout and the set of attributes that need to be read

23

would enable the network card to determine a generic gather-scatter access pattern. Only accessing the required
attributes and transforming the data as it moves through the network corresponds to a remote projection.

It is important to note that pushing down type information is a more powerful mechanism than a simple
access pattern in which the card alternates between reading b and skipping s bytes. For example, different
attributes for different tuples could be consolidated into the same operation. As described in Section 3.2, many
data replication mechanisms forward attribute-level change sets in order to not waste valuable bandwidth. With
precise type information, the network card could directly update the corresponding attributes for each tuple
individually as illustrated in Figure 3b.

4.3 Distributed Query Pipelines

In Section 3.1, we analyzed how RDMA can be useful in the context of a single database operator. The input
data is fully materialized at the start of the experiment. Although a database has a cost-based optimizer which
keeps statistics on the intermediate result sizes, it is difficult to precisely determine the data size produced by
different operators in a complex pipeline. This is especially the case for non-blocking operator pipelines in
which the intermediate data is often never fully materialized.

As pointed out in Section 4.2, more sophisticated one-sided operation would increase the flexibility of op-
erators when dealing with dynamic data sizes unknown ahead of time, e.g., an append operation would avoid
the histogram computation of the join algorithms. However, this does not eliminate the fact that, in many im-
plementations, RDMA buffers need to be allocated and registered by the host on which the memory resides.
Using such buffers as output buffers of remote up-stream operators is challenging, as the previous operator can-
not allocate new memory in case the output is larger than expected. Therefore, current data processing systems
either need to have a memory management system on every compute node which signals its remote counterpart
to allocate more memory, or ensure that the RDMA buffers are of sufficient size. To overcome this limitation,
future interconnects need to be able to allocate memory on remote nodes.

Operators inside a pipeline need to be synchronized at certain points in time. In particular, down-stream
operators need to be made aware when new input data is available for processing. Many high-speed networks
offer signaled write operations which notify the remote host of the RDMA transfer. If the data needs to be
accessed through a read operation, the common wisdom is to use two-sided operations where the up-stream
operator sends a message to the next operator in the query pipeline. Such a signaling mechanism leaves the
previous operator in control when to notify the down-stream operator of the existence of new data. However,
different types of operators have different data input access patterns. For example, a blocking pipeline operator
has to wait for all the data to be ready before being able to continue processing, while a streaming operator can
proceed when some amount of input data is available. One possible way to address this challenge is to introduce a
delayed read operation which is executed only when certain conditions on the remote side are fulfilled, e.g., when
at least a specified amount of data is ready for processing.

4.4 Future Run-Time Systems

The Message-Passing Interface (MPI) [25] is the de-facto standard interface for writing parallel computations
for high-performance computing (HPC) applications [16]. Although the interface has been designed for large
scale-out architectures, it can be used on a variety of different compute platforms, from laptops to high-end
supercomputers. Since its release in 1994, the interface has been extended to support not only message passing
primitives, but also provides support for one-sided operations.

Traditionally, databases and data processing systems employ low-level hardware features to optimize the
processing, e.g., SIMD vector instructions. When it comes to the network interface, many systems bind to
hardware-specific interfaces to achieve peak performance, making the application code not portable. To over-
come this problem, we observed that recent work in the area of databases started using standard communication

24

libraries such as MPI instead of hand-tuned code [6, 11]. Given that MPI is an interface description, an MPI
application can be linked against many different library implementations, each tailored to a specific network.

MPI in particular has been designed in the context of scientific HPC applications. Such applications are
characterized by a high degree of parallelism (i.e., several thousand processes) and a finite lifespan (typically
several minutes to several hours). This is in contrast to a database system, which is often designed with limited
parallelism and an infinite up-time in mind. As such, the MPI interface is missing a couple of features crucial
for database systems. For example, the interface does not allow the application to specify quality of service
requirements. It can therefore not prioritize latency sensitive communication although many networks offer
such mechanisms. Furthermore, fault-tolerance is important for mission critical systems such as databases, but
the current version of MPI (i.e., MPI-3) does not provide adequate functionality to detect and cope with failures.

The advantage of an interface like MPI is that it provides a set of expressive high-level operations to the
application programmer. Using operations that have a rich semantic meaning enables the library developer to
reason about the intentions of the application and be able to choose the right set of network primitives and
hardware-specific features in order to efficiently implement the network operations.

5 Conclusions

In this article, we have provided an overview of high-performance networks and discussed the implications of
these technologies on modern databases and data processing systems by looking at three use cases: distributed
join algorithms, data replication, and distributed coordination. From the analysis, we conclude that recent ad-
vances in network technologies enable a re-evaluation and re-design of several system design concepts and
database algorithms. For example, data processing systems have to interleave the computation and network
communication, have to consider the data layout, and have to rely on careful memory management for the
network to be efficiently used.

Despite their current potential, future networks need to include new functionality better suited to data-
intensive applications. These features include: the ability to push down application knowledge to the network
to enable smart scheduling; and more sophisticated one-sided operations that extend as well as complement the
existing read and write operations. Dynamic memory management mechanisms such as a remote allocation op-
eration would be useful for systems with complex processing pipelines in which the size of intermediate results
is not known ahead of time. More research is needed to identify all features and to define suitable interfaces.

Finally, we expect that future high-level communication libraries will include additional functionality re-
quired by mission-critical infrastructure such as databases.

References
[1] M.-C. Albutiu, A. Kemper, T. Neumann. Massively Parallel Sort-Merge Joins in Main Memory Multi-Core Database

Systems. PVLDB. 5(10):1064–1075, 2012

[2] B. Alverson, E. Froese, L. Kaplan , D. Roweth. Cray XC Series Network. Cray Inc. Whitepaper, 2012

[3] C. Balkesen, J. Teubner, G. Alonso, M. T. Özsu. Main-Memory Hash Joins on Modern Processor Architectures.
IEEE TKDE, 27(7):1754–1766, 2015

[4] C. Balkesen, J. Teubner, G. Alonso, M. T. Özsu. Main-memory Hash Joins on Multi-core CPUs: Tuning to the
underlying hardware. ICDE, 362–373, 2013

[5] C. Balkesen, G. Alonso, J. Teubner, M. T. Özsu. Multi-Core, Main-Memory Joins: Sort vs. Hash Revisited. PVLDB,
7(1): 85–96, 2013

[6] C. Barthels, I. Müller, T. Schneider, G. Alonso, T. Hoefler. Distributed Join Algorithms on Thousands of Cores.
PVLDB, 10(5):517–528, 2017

25

[7] C. Barthels, S. Loesing, G. Alonso, D. Kossmann. Rack-Scale In-Memory Join Processing using RDMA. SIGMOD,
1463–1475, 2015

[8] C. Binnig, A. Crotty, A. Galakatos, T. Kraska, E. Zamanian. The End of Slow Networks: It’s Time for a Redesign.
PVLDB, 9(7):528–539, 2016

[9] B. Carlson, T. El-Ghazawi, R. Numrich, K. Yelick. Programming in the PGAS Model. SC, 2003

[10] D. Chen, N. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D. L. Satterfield,
B. D. Steinmacher-Burow, J. J. Parker. The IBM Blue Gene/Q Interconnection Network and Message Unit. SC,
26:1–10, 2011

[11] A. Costea, A. Ionescu, B. Raducanu, M. Switakowski, C. Bârca, J. Sompolski, A. Luszczak,M. Szafranski, G. de Nijs,
P. A. Boncz. VectorH: Taking SQL-on-Hadoop to the Next Level. SIGMOD, 1105–1117, 2016

[12] S. Di Girolamo, P. Jolivet, K. D. Underwood, T. Hoefler. Exploiting Offload Enabled Network Interfaces. IEEE
MICRO, 36(4):6–17 ,2016

[13] P. W. Frey, R. Goncalves, M. L. Kersten, J. Teubner. A Spinning Join That Does Not Get Dizzy. ICDCS, 283–292,
2010

[14] P. W. Frey, G. Alonso. Minimizing the Hidden Cost of RDMA. ICDCS, 553–560, 2009

[15] J. Gray, A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1993

[16] W. Gropp, T. Hoefler, R. Thakur, E. Lusk. Using Advanced MPI: Modern Features of the Message-Passing Interface.
MIT Press, 2014

[17] J. Hilland, P. Culley, J. Pinkerton, R. Recio. RDMA Protocol Verbs Specification. IETF, 2003

[18] T. Hoefler. Active RDMA - new tricks for an old dog. Salishan Meeting, 2016

[19] InfiniBand Trade Association. InfiniBand Architecture Specification Volume 2 (1.3.1). IBTA, 2016

[20] InfiniBand Trade Association. Supplement to InfiniBand Architecture Specification Volume 1 (1.2.1) - Annex A17
RoCEv2. IBTA, 2014

[21] Z. István, L. Woods, G. Alonso. Histograms as a Side Effect of Data Movement for Big Data. SIGMOD, 1567–1578,
2014

[22] K. Kara, J. Giceva, G. Alonso. FPGA-Based Data Partitioning. SIGMOD, 2017

[23] D. Makreshanski, J. Giceva, C. Barthels, G. Alonso. BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP
Workloads. SIGMOD, 2017

[24] S. Manegold, P. A. Boncz, M. L. Kersten. Optimizing Main-Memory Join on Modern Hardware. IEEE TKDE,
14(4):709–730, 2002

[25] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard - Version 3.0. MPI Forum, 2012

[26] F. D. Neeser, B. Metzler, P. W. Frey. SoftRDMA: Implementing iWARP over TCP Kernel Sockets. IBM Journal of
Research and Development, 54(1):5, 2010

[27] F. Petrini, W. Feng, A. Hoisie, S. Coll, E. Frachtenberg. The Quadrics Network: High-Performance Clustering
Technology. IEEE Micro, 22(1):46–57, 2002

[28] O. Polychroniou, R. Sen, K. A. Ross. Track Join: Distributed Joins with Minimal Network Traffic. SIGMOD,
1483–1494, 2014

[29] W. Rödiger, S. Idicula, A. Kemper, T. Neumann. Flow-Join: Adaptive Skew Handling for Distributed Joins over
High-Speed Networks. ICDE, 1194–1205, 2016

[30] W. Rödiger, T. Mühlbauer, A. Kemper, T. Neumann. High-Speed Query Processing over High-Speed Networks.
PVLDB, 9(4):228–239, 2015

[31] P. Schmid, M. Besta, T. Hoefler. High-Performance Distributed RMA Locks. HPDC, 19–30, 2016

[32] E. Zamanian, C. Binnig, T. Kraska, T. Harris. The End of a Myth: Distributed Transactions Can Scale. CoRR, 2016

26

