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Abstract
RDMA networks offload packet processing onto specialised
circuitry of the network interface controllers (NICs) and by-
pass the OS to improve network latency and bandwidth. As a
consequence, the OS forfeits control over active RDMA con-
nections and loses the possibility to migrate RDMA applica-
tions transparently. This paper presents MigrOS, an OS-level
architecture for transparent live migration of containerised
RDMA applications. MigrOS shows that a set of minimal
changes to the RDMA communication protocol reenables
live migration without interposing the critical path operations.
Our approach requires no changes to the user applications and
maintains backwards compatibility at all levels of the network
stack. Overall, MigrOS can achieve up to 33% lower network
latency in comparison to software-only techniques.

1 Introduction

Major cloud providers increasingly offer RDMA network
connectivity [1, 55] and high-performance network stacks [8,
18, 37, 53, 69, 85, 89] to the end-users. RDMA networks
lower communication latency and increase network band-
width by offloading packet processing to the RDMA NICs
and by removing the OS from the communication criti-
cal path. To remove the OS, user applications employ spe-
cialised RDMA APIs, which access RDMA NICs directly,
when sending and receiving messages [54]. These perfor-
mance benefits made RDMA networks ubiquitous both in the
HPC [15, 30, 43, 50, 77] and in the cloud settings [22, 59, 72].

At the same time, containers have become a popular tool for
lightweight virtualisation. Containerised applications, being
independent of the host’s user space (libraries, applications,
configuration files), greatly simplify distributed application
deployment and administration. However, RDMA networks
and containers follow contradicting architectural principles:
Containerisation enforces stricter isolation between applica-
tions and the host, whereas RDMA networks try to bring
applications and underlying hardware “closer” to each other.
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Figure 1: Traditional (left) and RDMA (right) network stacks.
In traditional networks, the user application triggers the NIC
via kernel (1). After receiving a packet, the NIC notifies the
application back through the kernel (2). In RDMA networks
the application communicates directly to the NICs (3) and
vice-versa (4) without kernel intervention. Traditional net-
works require copy between application buffers ( ) and NIC
accessible kernel buffers ( ). RDMA NICs (right) access
message buffers in the application memory directly ( ).

Container orchestration systems, like Kubernetes, stop con-
tainers and restart them on other hosts for the purpose of
load balancing, resiliency, and administration. To maintain
efficiency, containerised applications are expected to restart
quickly [9]. Unfortunately, fast application restart requires
in-application support and can be very costly, as RDMA ap-
plications tend to have large state. In contrast, live migration
moves application state transparently and imposes no addi-
tional requirements for the application.

In the context of live migration, much of the container state
resides in the host OS kernel. It can be extracted and recovered
elsewhere later on. This recoverable state includes open TCP
connections, shell sessions, file locks [13, 40]. However, as
we elaborate in Section 3, the state of RDMA communication
channels is not recoverable by existing systems, and hence
RDMA applications cannot be checkpointed or migrated.

To outline the conceptual difficulties involved in saving
the state of RDMA communication channels, we compare
a traditional TCP/IP-based network stack and the IB verbs
API1 (see Figure 1). First, with a traditional network stack,
the kernel fully controls when the communication happens:

1IB verbs is the most common low-level API for RDMA networks.
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applications need to perform system calls to send or receive
messages. In IB verbs, because of the direct communication
between the NIC and the application, the OS cannot alter
the connection state, except for tearing the connection down.
Although the OS can stop a process from sending further mes-
sages, the NIC may still silently change the application state.
Second, part of the connection state resides at the NIC and
is inaccessible for the OS. Creating a consistent checkpoint
transparently is impossible in this situation.

The contribution of our paper is a way to overcome the
described limitations of current RDMA networks and the sup-
porting operating systems with a novel architecture. The root
of the problem to be solved is the impossibility for the OS to
intercept packets to manipulate and repair disrupted connec-
tions, as it happens in transparent live application migration.
The core point of the architecture is a small change in the
RDMA protocol, that is usually implemented in RDMA NICs:
we propose to add two new states and two new message types
to RoCEv2, a popular RDMA communication protocol, while
paying careful attention to backwards compatibility.

To make the proposed changes credible, we show that they
are 1. sufficient for migrations, as an example for disrupted
connections, and 2. indeed small. To prove the first point, we
design and implement a transparent end-to-end live migration
architecture for containerised RDMA applications. To prove
the second point, and to enable the software architecture, we
implement the new protocol by modifying SoftRoCE [48], a
software implementation of the RoCEv2 protocol.

Providing a credible evaluation is hard for us, since we can-
not modify the state machine of an RDMA NIC. Instead, we
substantiate our claims by comparing the latency and band-
width of the original and our modified protocol using Soft-
RoCE implementations and show that outside of the migra-
tion phase network performance is not affected. To justify the
proposed protocol changes and the container-based software
architecture, we evaluate software-level support for transpar-
ent live migration [2, 44]. We show that these approaches add
significant overhead to the normal operation.

2 Background

This section gives a short introduction to containerisation and
RDMA networking. We further outline live migration and
how RDMA networking obstructs this process.

2.1 Containers
In Linux, processes can be logically separated from the rest
of the system using namespaces. This way processes can
have an isolated view on the file system, network devices,
users, etc. Container runtimes leverage namespaces and other
low-level kernel mechanisms [17, 47] to create a complete
system view inside a container with one or multiple processes.
Migration of a container moves all processes running inside
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Figure 2: Primitives of the IB verbs library. Each QP com-
prises a send and a receive queue and has multiple IDs; node-
global IDs (grey) are shared by all QPs on the same node.

a given container. A distributed application may comprise
multiple containers across a network: a Spark application,
for example, can isolate each worker in a container and an
MPI [21] application can containerise each rank.

2.2 Infiniband verbs
The IB verbs API is a de-facto standard for high-performance
RDMA communication today. RDMA applications achieve
high throughput and low latency by accessing the NIC directly
(OS-bypass), reducing memory movement (zero-copy), and
delegating packet processing to the NIC (offloading).

Figure 2 shows the following IB verbs objects involved
in communication. Memory regions (MRs) represent pinned
memory shared between the application and the NIC. Queue
pairs (QPs), comprising a send queue (SQ) and a receive
queue (RQ), represent connections. To reduce the memory
footprint, the individual RQs of multiple QPs can be re-
placed with a single shared receive queue (SRQ). Completion
queues (CQs) inform the application about completed commu-
nication requests. A protection domain (PD) groups all these
objects together and represents the process address space to
the NIC.

To establish a connection, the IB verbs specification [54]
requires the applications to exchange the following address-
ing information: Memory protection keys to enable access
to remote MRs, the global vendor-assigned address (GUID),
the routable address (GID), the non-routable address (LID),
and the node-specific QP number (QPN). One way to per-
form this exchange is over an out-of-band network, e.g. Eth-
ernet. During the connection setup, each QP is configured
for a specific type of service. MigrOS supports only Reliable
Connections (RC), which provide reliable in-order message
delivery between two communication partners. Another pop-
ular type of service is Unreliable Datagram (UD), which does
not provide these guarantees.

The application sends or receives messages by posting send
requests (SR) or receive requests (RR) to a QP as work queue
entries (WQE). These requests describe the message and refer
to the memory buffers within previously created MRs. The
application checks for the completion of outstanding work
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requests by polling the CQ for work completions (WC).
There are various implementations of the IB verbs API for

different hardware, including Infiniband [37], iWarp [23], and
RoCE [35, 36]. InfiniBand is generally the fastest among these
networks but requires specialised NICs and switches. RoCE
and iWarp are easier to deploy, because they provide RDMA
capabilities in Ethernet networks. They still require hardware
support in the NIC, but do not depend on specialised switches.
This work focuses on RoCEv2, an increasingly more popular
version of the RoCE protocol [15, 60, 88]. At the same time,
we change only parts of RoCEv2 that are defined in the same
way for Infiniband [37] and RoCEv1 [35], hence MigrOS is
also compatible with other RDMA protocols.

To enable RDMA-application migration, it is important to
consider the following challenges:

1. User applications have to use physical network addresses
(QPN, LID, GID, GUID) but the IB verbs API does not
specify a way for virtualising these.

2. The NIC can write to any memory it shares with the
application without the OS noticing.

3. The OS cannot instruct the NIC to pause communication,
except for abruptly terminating it.

4. User applications do not handle changes in a connection
destination address and will go into an erroneous state.
As a result, the application will terminate abruptly.

5. Although the OS resides on the control path and is there-
fore aware of all IB verbs objects created by the appli-
cation, the OS does not control the whole state of these
objects, as the state partially resides on the NIC.

We address all of these challenges in Section 3.

2.3 CRIU
CRIU is a software framework for transparent checkpoint-
ing and restoring of Linux processes [13]. It enables live
migration, snapshots, or accelerated start-up of processes and
containers. To extract the user-space application state, CRIU
uses conventional debugging mechanisms, like ptrace [73, 74].
However, to extract the state of process-specific kernel objects,
CRIU depends on special Linux kernel interfaces.

During recovery, CRIU runs inside the target process and
recreates all OS objects on behalf of the target. This way,
CRIU utilises the available OS mechanisms to run most of the
recovery without the need for significant kernel modifications.
Finally, CRIU removes any traces of itself from the process.

CRIU can also restore the state of TCP connections, a cru-
cial feature for live migration of distributed applications [40].
The Linux kernel introduced a new TCP connection state,
TCP_REPAIR, for that purpose. In this state, a user-level pro-
cess can modify the send and receive message queues, get
and set the message sequence numbers and timestamps, or
open and close a connection without notifying the other side.

As of now, CRIU does not support saving and restoring
IB verbs objects. Discarding IB verbs objects during migra-
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Figure 3: MigrOS architecture. Software inside the container,
including the user-level driver (ibv-user, grey), is unmodified.
The host runs CRIU, kernel- (m-ibv-kern) and user-level (m-
ibv-user, green) drivers modified for migratability.

tion in the naive hope that the application will be able to
recover is failure-prone: once an application runs into an er-
roneous IB verbs object, in most cases, the application will
hang or crash. Thus, MigrOS provides explicit support for
IB verbs objects in CRIU (see Section 3).

3 Design

MigrOS is based on modern container runtimes and reuses
much of the existing infrastructure with minimal changes
(see Section 3.1). Most importantly, we require no modifi-
cation of the software running inside the container. Instead,
MigrOS includes the following changes concerning RoCEv2:
two new QP states to enable the creation of consistent check-
points (see Section 3.2), a connection migration protocol
(Section 3.3), and modifications to the packet-level RoCEv2
protocol (Section 3.4). Finally, Section 3.5 describes our mod-
ifications to the IB verbs API and how CRIU uses them. It is
sufficient to only extend CRIU with IB verbs support, exist-
ing container runtimes use CRIU for their checkpoint /restore
functionality [17, 47, 71, 76].

3.1 Software Stack
Typically, access to the RDMA network is hidden deep
inside the software stack. Figure 3 gives an example of
a containerised RDMA application. The container image
comes with all library dependencies, like the libc, but not the
kernel-level drivers. In this example, the application uses a
stack of communication libraries, comprising Open MPI [21],
Open UCX [77] (not shown), and IB verbs. Normally, to
migrate, a container runtime would require the application
inside the container to terminate and later recover all IB verbs
objects. This removes transparency from live migration.

MigrOS runs alongside the container comprising a con-
tainer runtime (e.g., Docker [17]), CRIU, and the IB verbs
library. We modified CRIU to make it aware of IB verbs, so
it can save IB verbs objects when traversing the kernel ob-
jects that belong to the container. We extend the IB verbs
library (m-ibv-user and m-ibv-kern) to enable serialisation
and deserialisation of the IB verbs objects. Importantly, the
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Figure 4: QP State Diagram. Normal states and state transi-
tions ( , ) are controlled by the user application. A QP
is put into error states ( , ) either by the OS or the NIC.
New states ( , ) are used for connection migration.

API extension is backwards compatible with the IB verbs
library running inside the container. Thus, both m-ibv-user
and ibv-user use the same kernel version of IB verbs. All of
the IB verbs components (ibv-user, m-ibv-user, m-ibv-kern)
comprise a generic and a device-specific part. MigrOS relies
on modified kernel and user parts (m-ibv-user and m-ibv-kern),
but requires no modifications of the software inside the con-
tainer.

3.2 Queue Pair States
Before explaining QP migration, we first recapitulate how a
QP functions in general. Communication can start, when an
application establishes a connection by taking a QP through a
sequence of states (depicted in Figure 4). Each newly-created
QP is in the Reset (R) state. To send and receive messages,
a QP must reach its final Ready-to-Send (RTS) state. Be-
fore reaching RTS, the QP traverses the Init and Ready-to-
Receive (RTR) states. In case of an error, the QP goes into
one of the error states; Error (E) or Send Queue Error (SQE).
In the Send Queue Drain (SQD) state, a QP does not accept
new send requests. Apart from that, SQD is equivalent to the
RTS state and we do not describe it further in this paper.

To migrate connections safely, we add two new states in-
visible to the user application (see Figure 4): Stopped (S) and
Paused (P). When the kernel checkpoints a process, all of its
QPs go into the Stopped state. A stopped QP does not send or
receive any messages. The QPs remain stopped until they are
destroyed together with the checkpointed process.

A QP becomes Paused when it learns that its destination QP
has transitioned to the Stopped state. A paused QP does not
send messages, but also has no other QP to receive messages
from. A QP remains paused, until the migrated destination
QP restores at a new location and sends a message with the
new location address. The paused QP retains the new location
of the destination QP and returns to the RTS state. After that,
the communication can continue.

3.3 Connection Migration
There are two considerations when migrating a connection.
First, the communication partner of the migrating container
must not confuse migration with a network failure. Second,
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Figure 5: To migrate from host N0 to host N2, the state of
the QP changes from RTS ( R ) to Stopped ( S ). Finally, the
QP is destroyed ( D ). If the partner QP at host N1 sends a
message during migration, this QP gets paused ( P ). Both
QPs resume normal operation once the migration is complete.

once the migration is complete, all partners of the migrated
container need to learn its new address.

We address the first issue by extending RoCEv2 with a
connection migration protocol. The connection migration
protocol is active during and after migration (see Figure 5).
This protocol is part of the low-level packet transmission
protocol and is typically implemented entirely within the
NIC. Also, we add a new negative acknowledgement type
NAK_STOPPED. If a stopped QP receives a packet, it replies
with NAK_STOPPED and drops the packet. When the partner
QP receives this negative acknowledgement, it transitions to
the Paused (P) state and refrains from sending further packets
until receiving a message of the new resume type. If N0 de-
stroys the QP before N2 sends the resume message, packets
coming from N1 will be dropped and no negative acknowl-
edgement will be sent. It is possible to synchronise the de-
struction of old QPs and the transfer of resume messages, but
we did not implement this feature in our prototype, because
such packet loss does not impair correctness.

After migration completes, the new host of the migrated
process restores all QPs to their original state and sends re-
sume messages. Resume messages are sent unconditionally,
even if the partner QP was not paused before. Any recipient
of a resume message updates its QP’s destination address to
the source address of the resume message, i.e., to the new
location of the migrated QP.

Each pause and resume message carries source and desti-
nation information. Thus, if multiple QPs migrate at the same
time, there can be no confusion which QPs must be paused or
resumed. On the other hand, MigrOS must prevent concurrent
migration of QPs at both ends of the same connection, be-
cause the senders of resume messages may be aware only of
old, outdated locations. If at any point the migration process
fails, the paused QPs will remain stuck and will not resume
communication. This scenario is completely analogous to a
failure during a TCP-connection migration. In both cases,
MigrOS will be responsible for cleaning up the resources.

3.4 Protocol Changes
Our protocol changes must be reflected in an RDMA NIC,
because most packet-level RoCEv2 protocol implementations
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Figure 6: MigrOS changes processing of incoming packets (PKT and ACK) and outgoing request (SR) by introducing new QP
states ( P and S ), new messages (PAUSE and RESUME), new operations (Ñ and Ù), and new transitions ( ). Solid arrows
( ) represent previously existing transitions, “*” represents the “else” branch, 9 Type checks the SR or packet type.

run in hardware. We proceed from the fact that a typical
RDMA NIC does all packet-level work, including transmit-
ting packets and acknowledgements by itself. As a conse-
quence, the OS cannot itself compose and process arbitrary
packets, including the packets that MigrOS introduces.

Therefore, for migration to work, we need to modify
RDMA NICs. The NIC adds different packet headers, depend-
ing on the service (RC, UD, etc.) and message (read, send,
etc.) type. Our changes touch only two headers: Base Trans-
port Header (BTH) and ACK Extended Transport Header
(AETH). BTH is the first RDMA-specific header, immedi-
ately following IP and UDP headers. Additionally, the NIC
needs to maintain two new flags per QP for pause and resume
states. The NIC must be able to transfer a QP into the Stopped
or Paused state, process a send request with a resume message
issued by the OS, and handle pause/resume packets.

Our changes (see Figure 6) cover three existing workflows
in the underlying RoCEv2 protocol: 1. Processing a send re-
quest WQE (Figure 6a), 2. receiving a packet (Figure 6b), and
3. receiving an acknowledgement (Figure 6c). The NIC must
consider the two new states of the QP in all these workflows.
This change of logic is small and does not change the packet
layout, as it is only part of the internal state of the QP.

The NIC must compose the new resume message or let the
OS do so. In contrast to a normal message, resume takes the
packet sequence number (PSN) from the last acknowledged
message instead of the last sent message. A receiver recog-
nises the resume message by a new opcode in the BTH header.
Creating a new message type does not require changes in the
message layout due to an abundance of unused opcodes.

Similarly, pause, sent as a new negative acknowledgement
type, employs an unused value of the syndrome field in the
AETH header. Therefore, the new pause NACK also requires
no change to the existing packet layout.

The workflows in the Figure 6 run when the user triggers

the NIC through a doorbell register, when a message arrives,
or by a timeout. Unless a QP is paused or stopped, the NIC
will try to send or complete multiple messages at once (Fig-
ure 6a and Figure 6c). As part of resume (Ù), the NIC also
triggers these workflows.

Figure 6 does not include, for example, additional timeout
reaction logic for the sake of brevity. Overall, the changes
in logic are simple and mostly reuse existing functionality.
Because we change only the AETH and BTH headers, our
changes are equally applicable to other RDMA protocols (e.g.
Infiniband or RoCEv1) that use these headers in the same way.
We believe neither new logic nor new states incur prohibitive
design or implementation cost.

A real RDMA NIC would need hardware support for the
new QP states and follow the corresponding protocol. Full mi-
gration support would also require the NIC to extract the state
of Infiniband objects and handle the new message types. We
believe all of this can be implemented in the NIC’s firmware2.
Section 4 presents a proof-of-concept software implementa-
tion of the proposed changes.

3.5 Checkpoint/Restore API

To enable checkpoint /restore for processes and containers,
we extend the IB verbs API with two new calls (see Listing 1):
ibv_dump_context and ibv_restore_object. CRIU relies on
the normal IB verbs API supplemented by the two new calls
to save and restore the IB verbs state of applications.

The ibv_dump_context call returns a dump of all IB verbs
objects within a specific IB verbs context, an object represent-
ing the connection between a process and an RDMA NIC.
The creation of a dump runs almost entirely inside the kernel
for two reasons: First, some links between the objects are

2The hardware /firmware-boundary will differ for FPGA and ASIC.
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int ibv_dump_context(struct ibv_context *ctx,
int *count , void *dump , size_t length);

int ibv_restore_object(struct ibv_context *ctx,
void **object , int object_type , int cmd,
void *args , size_t length);

Listing 1: Checkpoint /Restore extension for the IB verbs API.
ibv_dump_context creates an image of the IB verbs context
ctx with count objects and stores it in the caller-provided
memory region dump of size length. ibv_restore_object ex-
ecutes the restore command cmd for an individual object (QP,
CQ, etc.) of type object_type. The call expects a list of argu-
ments specific to the object type and recovery command. args
is an opaque pointer to the argument buffer of size length. A
pointer to the restored object is returned via object.

only visible at the kernel level. Second, to get a consistent
checkpoint it is crucial to ensure the dump is atomic.

Although the existing IB verbs API allows to create new
objects, it is not expressive enough for restoring them. For ex-
ample, when restoring a completion queue (CQ), the current
API does not allow to specify the address of the shared mem-
ory region for this queue, instead this address is assigned by
the kernel. It is also not possible to recreate a queue pair (QP)
directly in its original state, like Ready-to-Send (RTS). In-
stead, the QP has to traverse all intermediate states to reach
the desired state.

We introduce the fine-grained ibv_restore_object call to
restore IB verbs objects one by one, for situations when the
existing API is not sufficient. During recovery, CRIU reads
the object dump and applies a specific recovery procedure for
each object type. For example, to recover a QP, CRIU calls
ibv_restore_object with the command CREATE and transi-
tions the QP through the Init, RTR, and RTS states using
ibv_modify_qp. The memory regions or QP buffers are recov-
ered using the standard file and memory operations. Finally,
when a QP reaches the RTS state (representing an active
connection), the new host executes the REFILL command us-
ing the ibv_restore_object call. This command restores the
driver-specific internal QP state and sends a resume message
to the partner QP.

4 Implementation

To provide transparent live migration, MigrOS makes changes
to CRIU, the IB verbs library, the RDMA-device driver (Soft-
RoCE), and the packet-level RoCEv2-protocol. To migrate
an application, the container runtime invokes CRIU which
checkpoints the target container. CRIU stops active RDMA
connections and saves the state of IB verbs objects (see Sec-
tion 4.1). SoftRoCE then pauses communication using our
extensions to the packet-level protocol. After transfering the
checkpoint to the destination node, the container runtime at
that node invokes CRIU to recover the IB verbs objects and

restores the application. SoftRoCE then resumes all paused
communication to complete the migration process.

SoftRoCE is a Linux kernel-level software implementation
(not an emulation [48]) of the RoCEv2 protocol [36]. RoCEv2
runs RDMA communication by tunnelling Infiniband packets
through a well-known UDP port. In contrast to other RDMA-
device drivers, SoftRoCE allows the OS to inspect, modify,
and control the state of IB verbs objects completely.

As a performance-critical component of RDMA com-
munication, RoCEv2 usually runs inside the hardware and
firmware of a NIC. We focus on minimising these protocol
changes. The key part of MigrOS is the addition of connec-
tion migration capabilities to the existing RoCEv2 protocol
(see Section 4.2).

4.1 State Extraction and Recovery

State extraction begins when CRIU discovers that its target
process has opened an IB verbs device. We modified CRIU
to use the API presented in Section 3.5 to extract the state of
all available IB verbs objects. CRIU stores this state together
with other process data in an image. Later, CRIU recovers the
image on another node using the new API.

When CRIU recovers MRs and QPs of the migrated ap-
plication, the recovered objects must maintain their original
unique identifiers. These identifiers are system-global and
assigned by the NIC (in our case the SoftRoCE driver) in a
sequential manner. We augmented the SoftRoCE driver to
expose the IDs of the last assigned MR and QP to MigrOS in
userspace. These IDs are memory region number (MRN) and
queue pair number (QPN) correspondingly. Before recreating
an MR or QP, CRIU configures the last ID appropriately. If
no other MR or QP occupies this ID, the newly created object
will maintain its original ID. This approach is analogous to
the way CRIU maintains the process ID of a restored process
using the ns_last_pid mechanism of Linux, which exposes
the last process ID assigned by the kernel.

It is possible for some other process to occupy an MRN or
QPN, which CRIU wants to restore. Two processes cannot
use the same MRN or QPN on the same node, resulting in
a conflict. In the current scheme, we avoid these conflicts
by partitioning QP and MR addresses globally among all
nodes in the system before application startup. CRIU faces the
very same problem with process ID collisions. This problem
has only been solved with the introduction of process ID
namespaces. To remedy the collision problem for IB verbs
objects, a similar namespace-based mechanism, together with
a virtual RDMA network [29], would be required. We leave
this issue for future work.

Additionally, recovered MRs have to maintain their origi-
nal memory protection keys. The protection keys are pseudo-
random numbers [75] provided by the NIC and are used by
a remote communication partner when sending a packet. An
RDMA operation succeeds only if the provided key matches
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Figure 7: Resuming a connection in SoftRoCE. The figure
depicts a snapshot of an immediate state, whereas the arrows
indicate the flow of data over time. A send queue comprises
multiple SRs, each expected to send multiple packets. Pack-
ets 8 and 9 ( ) are to be processed by the requester. Pack-
ets 5 – 7 ( ) are yet to be acknowledged. Packet 4 ( ) is
already acknowledged. A receive queue contains RRs with
received ( ) and not yet received ( ) packets. QPb expects the
next packet to be 7. A resume packet has the PSN of the first
unacknowledged packet ( ). QPb replies with an acknowl-
edgement of the last received packet.

the expected key of a given MR. Other than that, the key’s
value does not carry any additional semantics. Thus, no colli-
sion problems exist for protection keys.

CRIU sets all protection keys to their original values before
communication restarts by making an ibv_restore_object

call with the IBV_RESTORE_MR_KEYS command.

4.2 Resuming Connections
The connection migration protocol ensures that connections
are terminated gracefully and recovered to a consistent state.
The implementation of this protocol is device- and driver-
specific. In this work, we modify the SoftRoCE driver to
make it compliant with the connection migration protocol
(Section 3.3) by providing an implementation of the check-
point /restore API (Section 3.5).

Figure 7 outlines the basic operation of the SoftRoCE
driver, which creates three concurrent tasks for each QP:
requester, responder, and completer. When an application
posts send (SR) and receive (RR) work requests to a QP, they
are processed by requester and responder correspondingly. A
work request may be split into multiple packets, depending
on the MTU size. When the whole work request is complete,
responder or completer notify the application by posting a
work completion to the completion queue.

The tasks process all requests packet by packet. Each task
maintains the packet sequence number (PSN) of the next
packet. A requester sends packets for processing at the respon-
der of its partner QP. The responder replies with an acknowl-
edgement sent to the completer. The completer generates a
work completion (WC) after receiving an acknowledgement
for the last packet in an SR. Similarly, the responder generates
a WC after receiving all packets of an RR.

After migration, when the recovered QPa is ready to com-
municate again, it sends a resume message to QPb with the
new address. Upon receiving the resume message, the re-

sponder of QPb learns the new location of QPa. Then, the
responder replies with an acknowledgement of the last suc-
cessfully received packet. If some packets were lost during
the migration, the next PSN at the responder of QPb is smaller
than the next PSN at the requester of QPa. The difference
corresponds to the lost packets. Simultaneously, the requester
of QPb can already start sending messages. At this point, the
connection between QPa and QPb is fully recovered.

The presented protocol ensures that both QPs recover the
connection without losing packets irrecoverably. If packets
were lost during migration, the QPs can determine which
packets were lost and retransmit them, as part of the normal
RoCEv2 protocol. The whole connection migration protocol
runs transparently for the user applications.

5 Evaluation

We evaluate MigrOS from three main aspects. First, we anal-
yse the implementation effort, with a specific focus on the
magnitude of changes to the RoCEv2 protocol. Second, we
study the overhead of adding migration capability, outside the
migration phase. Third, we estimate the fine-grained cost of
migration for individual IB verbs objects, as well as the full
latency of migration in realistic RDMA applications.

For most experiments, we use a system with two ma-
chines: Each machine is equipped with an Intel i7-4790 CPU,
16 GiB RAM, an on-board Intel 1 Gb Ethernet adapter, a Mel-
lanox ConnectX-3 VPI adapter, and a Mellanox Connect-IB
56 Gb adapter. The Mellanox VPI adapters are set to 40 Gb
Ethernet mode. The SoftRoCE driver communicates over this
adapter. The machines run Debian 11 with a custom Linux 5.7-
based kernel. We refer to this setup as local. When comparing
against DMTCP and FreeFlow, we use Ubuntu 14.04.

We conduct further measurements on a cluster comprising
two-socket Intel E5-2680 v3 CPUs nodes with Connect-IB
56 Gb NICs deployed by Bull. We refer to this setup as cluster.
Two nodes similar to those in the cluster were used in a local
setup and equipped with Mellanox ConnectX-3 VPI NICs
configured to 56 Gb InfiniBand mode.

5.1 Size of Changes

To quantify the changes MigrOS requires, we count the newly
added or modified source lines of code (SLOC) in different
components of the software stack. Out of around 4 kSLOC
only around 10% apply to the kernel-level SoftRoCE driver.
These changes mostly focus on saving and restoring the state
of IB verbs objects. We separately counted changes to the
requester, responder, and completer QP tasks responsible for
the active phase of communication (see Figure 7). These
tasks would be implemented in the NICs, for hardware-based
RDMA implementations. Therefore, we keep the changes to
QP tasks simple and small, as these changes must be reflected
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Object Features required State (bytes)

PD None 12
MR Set memory keys and MRN 48
CQ Restore ring buffer metadata 64
SRQ Restore ring buffer metadata 68
QP + QP tasks state, set QPN 271
QP w/ SRQ + Current WQE state 823

Table 1: Additional features implemented in the kernel-level
SoftRoCE driver to enable recovery of IB verbs objects. We
provide the size that each object occupies in the dump.

in firmware or hardware. In our implementation, changes to
QP tasks accounted only for around 6% of overall changes.

Using gcov [20], we verified that most of the changes to
the QP tasks do not affect the critical path of communication.
During the active phase of communication, 1213 lines were
touched out of 4808 lines of the SoftRoCE driver identified
by gcov as executable. Among the touched lines only 28 lines
correspond to code we added for migration, with 3 lines cor-
responding to variable assignments and the rest being jumps
related to checking for the Paused or Stopped state. The re-
maining code changes to the QP tasks run only during the
connection migration phase.

Besides additional logic in the QP tasks, saving and
restoring IB verbs objects requires the manipulation of
implementation-specific attributes. Some of these attributes
cannot be set through the original IB verbs API. For example,
recovering an MR requires the additional ability to restore the
original values of memory keys and the MRN. Some other
attributes are not visible in the original IB verbs API at all.
The queues (CQ, SRQ, QP) implemented in SoftRoCE re-
quire the ability to save and restore metadata of ring buffers
backing up the queues. If a QP uses a shared receive queue
(SRQ), the dump of the QP additionally includes the full state
of the current work queue entry (WQE). We identified all
required attributes for SoftRoCE, calculated their memory
footprint (see Table 1), and implemented all features required
by these attributes.

The changes to RoCEv2 implemented in SoftRoCE are
small and affect the critical path of communication only
marginally outside of the migration phase. We believe that
for RDMA NICs the same changes to RoCEv2 will remain
equally small.

5.2 Overhead of Migratability
Just adding the capability for transparent container migration
already may incur overhead even when no migration occurs.
For example, DMTCP (see Section 6) intercepts all IB verbs
library calls and rewrites both work requests and comple-
tions before forwarding them to the NIC. Both with DMTCP
and FreeFlow, this interception happens persistently, even if

Latency, µs Bandwidth, Gb/s

Size, B Unmod. FF DMTCP Unmod. FF DMTCP

20 0.8∗ 1.2∗ 1.4∗ 0.09 0.02 0.01
24 0.8∗ 1.2∗ 1.4∗ 1.41 0.24 0.20
28 1.1∗ 1.6∗ 1.8∗ 22.31 3.95 3.25
212 2.3 2.7 2.9 36.50 36.57 36.49
216 15.8 16.2 16.5 36.59 36.59 36.59
220 230.8 231.2 231.4 36.59 36.59 36.59

Table 2: Performance of CX3/40. Comparing execution with-
out modifications against DMTCP and FreeFlow. The varia-
tion over 30 runs was small, except,∗ when 0.05 < σ/µ < 0.1.

Latency, µ±σ µs

Size, B Plain Migratable DMTCP

20 25.3±0.2 25.0±0.2 26.2±0.6
24 25.3±0.3 24.9±0.4 25.5±0.5
28 26.9±0.6 25.7±0.7 28.0±0.5
212 35.7±0.4 36.8±0.7 35.5±0.5
216 93.2±1.9 93.8±1.9 94.4±1.9
220 793.9±12.8 802.0±11.3 802.1±13.5

Table 3: Communication latency with SoftRoCE. Comparison
of migratable and plain (non-migratable) SoftRoCE against
DMTCP using plain SoftRoCE.

the process never migrates. In contrast to this, MigrOS does
not intercept communication operations on the critical path,
thereby introducing no measurable overhead. This subsec-
tion explores the overhead added for normal communication
operations without migrations.

DMTCP [2] and FreeFlow [44] do not offer live migration.
Nevertheless, they could be extended to provide it. Therefore,
we start by estimating the cost of adding migration capability
at the user level. We use the latency and bandwidth bench-
marks from the perftest benchmark suite [68]. We ran each
experiment 30 times with 10000 iterations each at the local
setup, with CX3/40 NICs.

Both frameworks do additional processing for each
IB verbs work request, which results into near-constant over-
head to latency (see Table 2). Each work request corresponds
to a single message, not a single packet, therefore the overhead
diminishes for larger message sizes. Table 2 demonstrates
that bandwidth is directly affected by the increased latency
and thus is lower only for small messages. We expect such
bandwidth reduction to be a minor disadvantage for realistic
applications, whereas a near 50% increase in latency may be
critical for many latency-sensitive applications [30, 78].

It is possible, that despite our best effort to minimise the
changes to the NIC, changes proposed by MigrOS introduce
measurable overhead. Therefore, we need to show that Mi-
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Short Full name Location

SR SoftRoCE local
CX3/40 ConnectX-3 40 Gb Ethernet local
CX3/56 ConnectX-3 56 Gb InfiniBand cluster
CIB ConnectIB local
BIB Bull Connect-IB cluster

Table 4: RDMA-capable NICs used for the evaluation.

grOS adds no additional cycles during message transmission.
For that, we compare the performance of migratable and non-
migratable versions of the SoftRoCE driver3 against DMTCP
running with the non-migratable version of SoftRoCE. Run-
ning ib_send_lat [68] benchmarks in three different configu-
rations shows (see Table 3) that migratability adds no visible
overhead. Simultaneously, the latency increase for DMTCP
is also minute, making it hard to distinguish all three con-
figurations. The reason for such small difference between
different configurations is the large communication overhead
introduced by SoftRoCE. As a result, our experiment only
shows that migratability does not add a large overhead, but
does not allow to make a confident judgement regarding a
potential microsecond-scale overhead. This situation is an
unfortunate limitation of SoftRoCE. Considering how tiny
we expect the overhead to be, even an FPGA-implementation
may not be a precise reflection of a commercial RDMA NIC,
because of the significant differences between an FPGA and
an actual hardware implementation. We are convinced, due
to the arguments given in Section 3, that MigrOS does not
introduce even microsecond-scale overhead.

5.3 Migration Costs
With added support for migrating IB verbs objects, the con-
tainer migration time will increase proportionally to the time
required to recreate these objects. Our goal is to estimate the
additional latency for migrating RDMA-enabled applications.
This subsection shows the cost for migrating connections cre-
ated by SoftRoCE, as well as the cost for connection creation
with hardware-based IB verbs implementations.

Several IB verbs objects are required before a reliable con-
nection (RC) can be established, see Section 2.2. Usually, an
application creates a single PD, one or two CQs, multiple
memory regions, and one QP per communication partner.

To measure the cost of creating individual IB verbs objects,
we modified ib_send_bw [68] to create additional MR objects.
We created one CQ, one PD, 64 QPs, and 64 1 MiB-sized MRs
per run. Figure 8 shows the average time required to create

3Both versions are modified by us, because the original version (vanilla
kernel) of the SoftRoCE driver is extremely unstable. It contained a multi-
tude of concurrency bugs and could not be used in migration experiments.
Unfortunately, fixing the race conditions required significant restructuring
and resulted in a performance loss of around 20%.
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Figure 8: Object creation time for different RDMA devices
(see Table 4). To send a message, a QP needs to be in the
state RTS, which requires the traversal of three intermediate
states (Reset, Init, RTR). Error bars show the interval of the
standard deviation (σ) around the mean (µ), if σ/µ≥ 0.05.

each object across 50 runs. Each tested NIC is represented by
a bar. We draw two conclusions from this experiment. First,
there is substantial variation for all operations across different
NICs. Second, the time required for most operations is in the
range of milliseconds.

The exact time required for migrating RDMA connections
depends on two factors: the number of QPs and the total
amount of memory assigned to MRs [56]. Both of these fac-
tors are application-specific and can vary greatly. Therefore,
next, we show how the migration time is influenced by the
application’s usage of MRs and QPs.

Figure 9 shows the MR registration time, depending on the
region’s size. MR registration costs are split between the OS
and the NIC: The OS pins the memory and the NIC learns
about the virtual memory mapping of the registered region.
SoftRoCE does not incur the “NIC-part” of the cost, so MR
registration with SoftRoCE is faster than for RDMA-enabled
NICs. For this experiment, we do not consider the cost of
transferring the contents of the MRs during migration.

The number of QPs is the second variable influencing the
migration time. Figure 10 shows the time for migrating a con-
tainer running the ib_send_bw benchmark. This benchmark
consists of two single-process containers running on two dif-
ferent nodes. Three seconds after communication starts, the
container runtime migrates one of the containers to another
node. The migration time is measured as the maximum mes-
sage latency as seen by the container that did not move. The
checkpoint is transferred over the same network link used by
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Figure 12: MPI application migration.

the benchmarks for communication. With a growing num-
ber of QPs, the benchmark consumes more memory, ranging
from 8 MiB to 20 MiB. To put things into perspective, we es-
timated the migration time for real devices by calculating the
time to recreate IB verbs object for RDMA-enabled NICs. We
subtracted the time to create IB verbs objects with SoftRoCE
from the measured migration time and added the time needed
to create IB verbs objects with RDMA NICs (from Figure 8).
We show our estimations with the dashed lines.

5.4 MPI Application Migration
For evaluating transparent live-migration of real-world ap-
plications, we chose to migrate NPB 3.4.1 [3], an MPI
benchmark suite. The MPI applications run on top of
Open MPI 4.0 [21], which in turn uses Open UCX 1.6.1 [77]
for point-to-point communication. We configured UCX to use
IB verbs communication over reliable connections (RC).

This setup corresponds to Figure 3. We containerised the
applications using our self-developed runtime konyk, based on
libcontainer [76]. Unlike Docker, our runtime facilitates faster
live migration by sending the image directly to the destina-
tion node, instead of the local storage, during the checkpoint
process. Additionally, konyk stores checkpoints in RAM, re-
ducing migration latency even more. As any other container

runtime, konyk internally uses CRIU for checkpointing and
restoring containers. Further description of our container run-
time is out of scope of this paper.

To measure the application migration latency, we start each
MPI application with four processes (ranks). Approximately
in the middle of the application progress, one of the ranks
migrates to another node. Each benchmark has a size (A to F)
parameter. We chose the size such that all benchmarks run be-
tween 10 and 300 seconds. We excluded the “dt” benchmark,
because it runs only for around a second. Figure 12 shows
container migration latency and standard deviation around the
mean, averaged over 20 runs of each benchmark.

We break down the migration latency into three parts:
checkpoint, transfer, and restore. MigrOS first stops the target
container and prepares the checkpoint. Almost immediately,
and in parallel with checkpointing, MigrOS starts to transfer
checkpoint data to the destination node. The transfer happens
over the network link used by the benchmarks for communi-
cation. This overlap of checkpointing and data transfer min-
imises the time of exclusive data transfer. After the transfer is
complete, MigrOS recovers the container at the destination
node. Overall, the benchmarks experience a runtime delay
proportional to the migration latency, which is proportional
to the checkpoint size.

MPI applications (Figure 12) migrate slower than mi-
crobenchmarks (Figure 10), even after accounting for the
checkpoint size, because of the difference in measurement
methodology. For the microbenchmark, we calculate the mi-
gration time based on the maximum message latency observed
by the non-migrating process. For the MPI benchmarks, we
calculate the migration time from the increase in total execu-
tion time of the whole benchmark. This discrepancy indicates
that the migration of parallel applications may cause a larger
disruption to the application performance than the simple
state transfer time can explain.

To show the interoperability of MigrOS with other con-
tainer runtimes, we measured the migration costs when using
Docker 19.03 (see Figure 11). We had to provide the end-to-
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Table 5: Selected checkpoint/restore systems handle either
VMs, processes (P), containers (C), or application objects (O).
Runtime-based systems naturally introduce no additional com-
munication overhead for migration support.

end migration flow ourselves, because Docker features only
checkpoint and restore. To our disappointment, Docker does
not employ some important optimisations and requires much
time to complete migration. To understand the performance
difference better, we disabled some optimisations in konyk:
saving checkpoints to main memory (instead of hard disk),
sending checkpoints during dumping, and using an optimised
way to transfer the checkpoint. All of this was not enough
to match the performance of Docker. Further investigation
revealed Docker unnecessarily moving checkpoint images
across the file system, proving the importance of explicit
live migration support within a container runtime. Neverthe-
less, we demonstrate the principle possibility of containerised
RDMA-application migration using Docker.

6 Related Work

VMs Live migration of virtual machines (VMs) has a long
usage history in cloud computing [11, 16, 31, 63, 67]. We
expect live migration to become even more popular with the
growth of new computing paradigms, like disaggregated and
fog computing [12, 25, 65, 86]. Nevertheless, past techniques
for live VM migration with RDMA NICs relied on migration-
aware, paravirtualised drivers inside the VMs [32, 70]
Checkpoint/Restore Techniques Transparent live migra-
tion of processes [4, 57, 81], containers [51, 58, 62], or vir-
tual machines [11, 16, 31, 63, 67] has long been a topic of
active research. The key challenge of this technique lies in the
checkpoint/restore operation. For processes and containers,
this operation can be implemented at three levels: application
runtime, user-level system, or kernel-level system. Table 5
compares a selection of existing checkpoint/restore systems.

Runtime-based systems expect the user application to ac-
cess all external resources through the API of the runtime.
This restriction resolves two important issues with resource

migratability: First, the runtime system controls exactly when
the underlying resource is used and can easily stop the ap-
plication from doing so to serialise the state of the resource.
Second, the runtime can maintain enough information about
the state of the resource to facilitate resource serialisation and
deserialisation. Such interception is cheap because it happens
within the application’s address space.

Almost all attempts to provide transparent live migration
together with RDMA networks rely on modifications of the
runtime system [2, 24, 26, 32, 41, 70]. Some runtimes oper-
ate on application-defined objects (tasks, agents, lightweight
threads) for even more efficient state serialisation and deseri-
alisation [7, 43, 87]. All runtime-based approaches bind the
application to a particular runtime system.

Kernel OS-level checkpoint/restore systems [6, 28, 38, 42,
66] either do interposition at the kernel level or extract ap-
plication state from the kernel’s internal data structures. Al-
though these systems support a wider spectrum of user ap-
plications, they incur a significantly higher maintenance bur-
den. BLCR [28] has been abandoned eventually. CRIU [13],
currently the most successful OS-level tool for checkpoint/re-
store, keeps necessary Linux kernel modification at a mini-
mum and does not require interposition at the user-kernel API.
We describe this tool in more detail in Section 2.3.

Finally, user OS-level systems interpose the user-kernel
API, providing the same transparency and generality as kernel-
based implementations. Such systems use the LD_PRELOAD

mechanism to intercept system calls from applications and
virtualise system resources, like file descriptors, process IDs,
and sockets. In version 4, MOSIX has been redesigned to
work entirely at the user level [5]. DMTCP [2] is a trans-
parent fault-tolerance tool for distributed applications with
support for IB verbs. To be able to extract the state of IB verbs
objects, DMTCP maintains shadow objects, which act as
proxies between a user process and the NIC [10]. In Sec-
tion 5.2, we show that maintaining these shadow objects has
non-negligible runtime overhead for RDMA networks.

Furthermore, live migration may employ RDMA networks
to improve the speed of the checkpoint transfer [33, 39]. These
techniques allow to reduce the downtime from migration
and could be combined with our technique to improve the
migration time of RDMA applications.
Network Virtualisation TCP/IP network virtualisation is
an essential tool for isolating distributed applications from the
underlying physical network topology. Even though network
virtualisation enables live migration, it introduces overhead
due to additional encapsulation of network packets [64, 89].
Several new approaches try to address these performance
problems [8, 64, 69, 89]. However, these approaches do not
consider RDMA networks.

RDMA-network virtualisation approaches focus on imple-
menting connection control policies in software, but do not
support live container migration [29, 44, 84]. As an exception,
Nomad [32] uses InfiniBand address virtualisation for VM
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migration, but implements the connection migration protocol
inside an application-level runtime.

MigrOS uses traditional network virtualisation for TCP/IP
networks, which is not on the performance-critical path for
RDMA applications. However, MigrOS avoids unnecessary
interception of RDMA communication. Instead, MigrOS
silently replaces addressing information during migration.
RDMA Implementations SoftRoCE [48] and Softi-
Warp [83] are open-source software implementations of Ro-
CEv2 [36] and iWarp [23] respectively. Both provide no per-
formance advantage over socket-based communication but
are compatible with their hardware counterparts and facilitate
the development and testing of RDMA-based applications.
We chose to base our work on SoftRoCE because RoCEv2
found wider adoption than iWarp.

There are also open-source FPGA-based implementations
of network stacks. NetFPGA [90] does not support RDMA
communication. StRoM [79] provides a proof-of-concept
RoCEv2 implementation. However, we found it unfit to run
real-world applications (for example, MPI) without further
significant implementation efforts.

7 Discussion and Conclusion

MigrOS is an OS-level architecture enabling transparent live
container migration without sacrificing RDMA network per-
formance. We are convinced the architecture of MigrOS can
be useful for dynamic load balancing, efficient prepared fail-
over, and live software updates in cloud or HPC settings.
Hardware Modifications and Software Implementation
We believe that limited hardware changes are worthy of con-
sideration and have already been proven feasible [14, 27, 45,
45, 61], even for RDMA protocols [34, 46, 49]. Nevertheless,
propositions to modify hardware often meet criticism because
they are hard to validate and evaluate for an OS designer.
To overcome this difficulty, we have modified SoftRoCE. It
turned out that adding only few states to the state machine
and two new message types were necessary. As result, we
enabled transparent live migration of containerised RDMA
applications without affecting the critical path of the commu-
nication. Lesokhin et al. [46] have demonstrated that RDMA
protocol changes can be achieved just through firmware up-
dates, barring the need to replace NICs. Furthermore, our
design maintains full backwards-compatibility with the ex-
isting RDMA network infrastructure at every level and can
be adopted by other RDMA protocols (e.g. Infiniband and
RoCEv1) verbatim.
Unreliable Datagram Communication MigrOS provides
live migration for reliable communication (RC), but not for
unreliable datagram (UD), because, first, every message re-
ceived over UD exposes the address of its sender. When this
sender migrates, its address will change and, currently, Mi-
grOS cannot conceal the change from the receiver. Second, a

UD QP does not know where to send resume messages after
migration, because it can receive messages from anywhere.
Consequently, to support UD, a NIC would need to maintain
an additional simple table to translate between user-visible
and actual addresses. We leave this issue for future work.
Security As of today, lack of authentication and integrity
control is a general problem in RDMA networks [52, 75, 80,
82]. Therefore, modern RDMA networks rely on trusted NICs
and hosts. In the context of this paper, we require the host OS
to ensure that pause and resume messages may only be sent
by authorised hosts. If either NICs or hosts cannot be trusted,
additional protocols must prevent the sending of unauthorised
(e.g. by spoofing) pause and resume messages. In this regard,
we do not degrade security of the RDMA network.
White-box migration Previous live migration techniques
require cooperation on the application’s behalf, because they
see RDMA NICs as black boxes. To our knowledge, our work
is first to consider an RDMA NIC as a white box for the
purpose of live migration. We categorise the device state as
1. public state, observable through the IB verbs API, 2. device–
driver-visible state, visible by kernel- and user-level drivers,
3. internal state, invisible outside the device. The device must
expose its internal state to the OS at the time of migration.
We hope, these findings can be useful, when implementing
live migration for other devices, e.g. GPUs.
Beyond migration We believe that the pause/resume proto-
col can find other uses, like efficient fail-over, congestion con-
trol, or load balancing. As an example, consider MasQ [29],
a virtual RDMA network with firewall capabilities. MasQ
can shut down RDMA connections, but unlike TCP/IP fire-
walls, cannot block them temporarily. Our protocol could re-
turn control over RDMA connections to the OS and replicate
TCP/IP-like behaviour to RDMA firewalls as well.
Availability github.com/TUD-OS/migros-atc-2021.
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