
MB3 MS13– TinyMPI tasking prototype
Version 1.0

Document Information

Contract Number 671697

Project Website www.montblanc-project.eu

Contractual Deadline PM39

Dissemination Level PU

Nature Report

Authors Alexandr Nigay (ETHZ), Timo Schneider (ETHZ), Torsten Hoefler
(ETHZ)

Contributors Alexandr Nigay (ETHZ), Timo Schneider (ETHZ), Torsten Hoefler
(ETHZ)

Reviewers Xavier Martorell (UPC), Daniel Ruiz Munoz (ARM)

Keywords MPI, MPI virtualization, user-level threads, oversubscription,
computation-communication overlap

Notices: This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 671697.

©Mont-Blanc 3 Consortium Partners. All rights reserved.

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Change Log

Version Description of Change

v0.1 Initial version of the deliverable

v0.2 Changed figure sizes and wording

v0.3 Changed figures, wording, added future work

v1.0 Final version

2

MS13 - TinyMPI tasking prototype
Version 1.0

Contents

Executive Summary 4

1 Implementation of TinyMPI 5
1.1 Brief description of TinyMPI . 5
1.2 Implementation of TinyMPI . 5
1.3 Using TinyMPI on Dibona . 7

2 Virtualization Ratio 7
2.1 Problem statement . 7
2.2 Modelling the influence of the virtualization ratio 8

2.2.1 Performance model of the user application 8
2.2.2 The virtualized model . 9
2.2.3 Derivation of the virtualized model . 16
2.2.4 Discussion of the virtualized model . 18

3 Conclusion and Future Work 18

Acronyms and Abbreviations 19

3

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Executive Summary

This document describes TinyMPI, a prototype MPI implementation which follows the non-
traditional approach of virtualizing MPI, and presents the results of a research effort which
employed TinyMPI as a research vehicle.

Traditional MPI implementations run at most one MPI rank per CPU core. TinyMPI runs
more than one MPI rank per CPU core, i.e., it oversubscribes the CPU, with the goal of achieving
automatic computation-communication overlap: when one MPI rank blocks, TinyMPI switches
to another and continues using the CPU.

We have used TinyMPI as a tool in the research effort of answering the question, “How
many ranks exactly to start on each CPU core?”, the results of which — in the form of a model
— are presented in this document along with a description of TinyMPI’s internals.

TinyMPI supports the Arm architecture and is deployed on the Dibona cluster.

4

MS13 - TinyMPI tasking prototype
Version 1.0

1 Implementation of TinyMPI

1.1 Brief description of TinyMPI

Computation–communication overlap and good load balance are two very important prerequi-
sites for achieving high performance of parallel programs, even more so on large-scale machines
with high core counts, such as the architecture envisaged by the Mont-Blanc project.

Unfortunately, those two traits are hard to achieve with MPI [Mes15], the de facto standard
technology for network communication in HPC software, because this requires the use of the
nonblocking interface of MPI, which makes the code more complex and hard to maintain.

An alternative solution is to use a virtualized MPI implementation. Traditionally, at most
one MPI process is launched per CPU core, but a virtualized MPI would launch more than
one process per core and keep switching between them. When one MPI process blocks in a
communication call, the implementation can switch to a process which is ready to compute,
thus achieving overlap of computation and communication. This approach permits the user
code to use the conceptually-simpler blocking interface of MPI. Load balancing can also be
implemented by migrating MPI processes between CPU cores and potentially even nodes—all
done without any participation from the user code, which drives the complexity even further
down.

TinyMPI is a virtualized MPI implementation developed under this project and used as a
research vehicle for various investigations.

1.2 Implementation of TinyMPI

TinyMPI is written in C++11 and is almost header-only: essentially only the definitions of
variables are placed in compiled files, while all the MPI logic resides in header files.

On the Arm architecture, TinyMPI uses the makecontext1 family of functions to implement
user-level threads and it uses Pthreads for kernel-level threads. Figure 1 summarizes TinyMPI’s
task topology. During startup, TinyMPI proceeds as follows:

1. The underlying non-virtualized MPI is used to start a single operating-system process on
each distinct compute node (a distinct machine on the network).

2. Each of those processes spawns the requested number of kernel-level threads using Pthreads.
Each of these threads is pinned to a different CPU core.

3. Each of the kernel-level threads spawns the requested number of user-level threads, each
of which will become an MPI rank visible to the user application.

Two kinds of MPI ranks exist at this point: the MPI ranks of the underlying non-virtualized
MPI, which are not visible to user code and are used internally by TinyMPI; and the MPI ranks
exposed by TinyMPI to the user application.

TinyMPI implements network communication using RDMA via Infiniband Verbs API. Each
MPI rank is associated with two queues: waiting queue, which holds local receive requests
which have not been matched yet; and unexpected queue, which holds incoming send requests
for which a local matching receive has not been posted yet. A posted receive first checks the
unexpected queue, and if matching fails there, appends to the waiting queue. An incoming send
request targeting this rank first checks the waiting queue and only then goes to the unexpected

1man makecontext

5

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Node 1

c1 c2

c3 c4

Node 2

c1 c2

c3 c4

Node 3

c1 c2

c3 c4

Process

Node 2

Thread 1

Thread 3 Thread 4

Thread 2

Core 4

Core 2

Core 3

Core 1

Tasks

Tasks

Tasks

Tasks

Figure 1: Task topology in TinyMPI: a single operating-system process launches on each com-
pute node (e.g., node 2, a distinct machine on the network); a single kernel-level thread (e.g.,
Thread 1) launches on each CPU core (e.g., Core 1); multiple user-level threads (tasks) run on
each kernel-level thread; each MPI rank is a distinct user-level thread (task).

queue. TinyMPI sends short messages eagerly, while large messages are sent with the rendezvous
protocol [WSB+06].

Shared-memory communications are implemented via a single copy from the source buffer
directly into the destination buffer—since all ranks on the same compute node are user-level
threads spawned off the same process, they share a single address space and a direct copy is
possible in user space.

TinyMPI still requires a regular, non-virtualized MPI implementation: the regular MPI is
used for spawning processes, one per each node, and it is also used as a stage in collective
operations (e.g., MPI’s MPI Allreduce is called as a part of TinyMPI’s TMPI Allreduce).

TinyMPI currently implements the following subset of MPI:

� TMPI Send, TMPI Isend

� TMPI Recv, TMPI Irecv

� TMPI Wait, TMPI Waitall

� TMPI Sendrecv

� TMPI Barrier, TMPI Allreduce, TMPI Bcast, TMPI Allgather.

� TMPI Comm size, TMPI Comm rank

� TMPI Get count, TMPI Request get status, TMPI Type size

� TMPI Wtime, which can be switched to measure rank-POV time (which is described in the
deliverable D7.7 [MB317]).

6

MS13 - TinyMPI tasking prototype
Version 1.0

1.3 Using TinyMPI on Dibona

TinyMPI can be loaded on Dibona with module load cnrs/tinympi/gcc7.2.1/0.1.
For a code to work with TinyMPI, the following requirements must be observed:

� The code must be written in C++.

� TinyMPI defines the main() entry point on its own, and the user application’s entry point
must be put into a function TMPI main(int, char**).

� User code should not call TMPI Init() and TMPI Finalize()—TinyMPI is already initial-
ized when TMPI main(int, char**) is called, and it is finalized when that call returns.

� The code must use TMPI * functions instead of MPI *: TinyMPI’s interface uses prefix
TMPI *. Symbols starting with MPI * refer to the symbols of the underlying non-virtualized
MPI. This applies to all symbols, including, e.g., TMPI COMM WORLD.

� Manually privatize global variables that are written by the user code: since TinyMPI
maps MPI ranks to user-level threads which are spawned off a single process on each
node, all ranks will share global variables within each node. If this is not what the user
code expects, the globals have to be privatized, e.g., by passing them through function
arguments.

TinyMPI provides two commands: tinympicxx and tinympirun.
Code should be compiled with tinympicxx, which is a wrapper around a C++11 compiler,

providing TinyMPI’s include and link flags. tinympicxx has been tested with GNU compilers.
Any arguments given to tinympicxx are passed to the underlying compiler.

Compiled code is executed with tinympirun, which should be called as follows:
tinympirun -nn <N> -nc <C> -nv <V> <user-binary> <user-args>
Example: tinympirun -nn 4 -nc 8 -nv 4 ./benchmark -q10

The parameters have the following meaning:

� -nn <N> specifies the number of nodes (distinct machines connected via network) to use.

� -nc <C> specifies the number of CPU cores to use on each node, so the global number of
cores used will be N × C; fewer cores than available may be used, if desired.

� -nv <V> specifies the number of MPI ranks to launch on each core (this is the virtualization
ratio), so the size of TMPI COMM WORLD is N × C × V .

2 Virtualization Ratio

This section presents the results of research work conducted using TinyMPI as a research vehicle.

2.1 Problem statement

The number of MPI ranks that a virtualized MPI implementation launches per CPU core is
referred to as virtualization ratio. We will also refer to this parameter as V . Intuitively, V plays
an important role in the overall performance: if V = 1, then no virtualization benefits can be
seen at all; if V is too large, then the overhead of task switching and the increased volume of
intra-node communication will outweigh all benefits.

7

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Listing 1: Outline of the microbenchmark employed for developing the model for the virtual-
ization ratio. The code mimics a two-dimensional stencil application. Each rank communicates
with 4 neighbors.

int main (int argc , char** argv) {
MPI Init () ;
for (int i = 0 ; i < ITERS ; i++) {

/* Computation phase */
compute () ;

/* Communication phase */
MPI Irecv () ; MPI Irecv () ;
MPI Irecv () ; MPI Irecv () ;

MPI Isend () ; MPI Isend () ;
MPI Isend () ; MPI Isend () ;

MPI Waitall () ;
}
MPI Finalize () ;

}

Currently, the value of V has to be chosen empirically. However, for a parameter as impor-
tant as this, it would be very beneficial to have a model which could allow choosing the value
analytically. This section of the report presents our efforts in developing such a model.

2.2 Modelling the influence of the virtualization ratio

We have set out to design an analytical expression which, taking V and other relevant parameters
as input, would produce the amount of time a given program will take to execute. We will call
such a model a virtualized model. Such a model not only allows to choose the optimal value of
V but also to compare the predicted running time with the current values, which can be used
to determine whether a virtualized MPI will or will not benefit the application at hand even
before commencing any porting efforts.

Since a virtualized model inherently depends on the behavior of the user application, a per-
formance model for the user application, which we refer to as the base application performance
model, must be found first.

2.2.1 Performance model of the user application

In our work we have used a synthetic microbenchmark which mimics a two-dimensional stencil
computation. The outline of this code is presented in Listing 1.

The beneficial effects of MPI virtualization involve computation–communication overlap,
which is the overlap of CPU activity and network activity. Hence, a virtualized model must
be able to evaluate the influence of V on these two categories separately. In addition to that,
for reasons that will be made clearer later, a virtualized model of our design requires the CPU
activity to be broken down into two separate categories: computation and shared-memory
communication.

The three necessary parts of the performance model of our microbenchmark are as follows:

8

MS13 - TinyMPI tasking prototype
Version 1.0

� The computation time of each MPI rank:

Tcomp(P) = Tserial + iters · gxsz · gysz · kmax

tsc · 1024
· 1

P
(1)

� The shared memory communication time of each MPI rank:

Tshmem(P) = iters · 4
(
Ls +

4 · halo · gxsz
Bs

)
(2)

� The network communication time of each MPI rank:

Tnet(N,C, V) = iters · 4

(
LN +

C · 8·halo·gyszC·V
min(BNIC−NIC , C ·BCORE−NIC)

)
(3)

The network-communication model employs the maxrate model introduced by Gropp et al.
[GOS16]. Parameter P denotes the number of MPI ranks; gxsz, gysz, kmax, iters, and halo
are the parameters of the application code itself; tsc is the frequency of the CPU, which is
also a parameter of the microbenchmark; Ls, Bs denote the latency and bandwidth of shared-
memory communication; LN denotes the network latency; BNIC−NIC denotes the bandwidth
between two network interface cards (NIC); BCORE−NIC denotes the peak bandwidth between
a CPU core and the NIC installed in the same node; N is the number of compute nodes
participating in the computation; C is the number of CPU cores within each compute node; V
is the virtualization ratio.

The fit of this model is presented in Figure 2, in which the three components of the model are
summed and plotted alongside measured data (blue dots). Note that the blue dots are very close
together and in some cases completely overlapped by their median (red dots). In the bottom
subplot we show the relative error of the model. All experiments have been performed on the
Dibona cluster (Arm architecture). Since the experiment shown in Figure 2 uses strong-scaling
and we want to keep the computation per process equal for all process numbers, we exclude
some process numbers which would lead to a overly large domain size.

2.2.2 The virtualized model

The virtualized model that we have designed has the following shape:
Tvirt(N,C, V) = max

(
cpu, net

)
+ 1

2 · Tcomp(N · C · V)

cpu = V · Tcomp(N · C · V) + V · Tshmem(N · C · V)

net = V · Tnet(N, C, V)

(4)

Tvirt is the predicted running time of a virtualized MPI application running on N nodes,
each of which has C CPU cores, and with V MPI ranks per core. Tcomp, Tnet, and Tshmem are
the computation, network communication, and shared-memory communication components of
the base application performance model.

Figures 3 to 7 present the fit of this model for the benchmark application presented in the
previous section. We vary the number of cores used (parameter C) per Dibona node between 3
and 12. The base performance model of the application was designed to predict the running time
in seconds, therefore the virtualized model also predicts running time in seconds. The running
time is shown as a blue dot for each of the 25 runs (we also show the median in red). Green
dots are used to indicate computation time per run. In addition we show the cummulative
time spend in memcopy and waiting for messages, brown dots show the total overhead, i.e.,
subtracting computation time from the total runtime. This model and the prediction made by
it can be used to make two decisions:

9

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Figure 2: Performance model of the benchmark application employed for developing the virtu-
alized model.

1. Whether it will be beneficial to use a virtualized MPI implementation with
a given user application. Virtualized MPI implementations map MPI ranks to user-
level threads rather than to operating-system-level processes in order to avoid paying
too much overhead for each context switch. Therefore, virtualized MPI implementations
require the calculation to be thread-safe, while MPI programs are usually not written that
way because each MPI rank, usually being mapped to an OS-level process, is assumed
to have its own private address space; hence, non-trivial development work will most
likely be required to adapt an application to a virtualized MPI implementation, even
given the existence of automated conversion tools (e.g., tools that automatically privatize
global variables [ZNM+11, NZP+11]). For this reason, it is valuable to possess the ability
to predict in advance whether or not these efforts would be justified by the benefits. A
virtualized model can fulfill this need: if the virtualized model predicts, for a certain value
of V , a running time lower than what can be achieved with a standard, non-virtualized
MPI implementation, then it will be beneficial to use a virtualized MPI.

2. Choice of V . The other decision which is informed by the virtualized model is the choice
of the optimal value of V . This is the value of V for which the model predicts the lowest
running time (highlighted with circles in Figures 3 to 7). Such a decision is made after a
code has been adapted to work with a virtualized MPI implementation. Without a model
to inform this decision, the process of choosing V is entirely trial-and-error with repeated
invocations of the program, which may be unsuitable if the calculation requires a large
portion of a large machine at once.

The following two sections will describe the derivation of this model and discuss the potential
for its improvement.

10

MS13 - TinyMPI tasking prototype
Version 1.0

Figure 3: Fit of the proposed virtualized performance model. Using C = 3, the number of CPU
cores per compute node used by the calculation. Within the plot, the virtualization ratio is
varied (x axis), and the predicted and actual running times of the benchmark are plotted (y
axis).

11

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Figure 4: Fit of the proposed virtualized performance model. Using C = 5, the number of CPU
cores per compute node used by the calculation. Within the plot, the virtualization ratio is
varied (x axis), and the predicted and actual running times of the benchmark are plotted (y
axis).

12

MS13 - TinyMPI tasking prototype
Version 1.0

Figure 5: Fit of the proposed virtualized performance model. Using C = 6, the number of CPU
cores per compute node used by the calculation. Within the plot, the virtualization ratio is
varied (x axis), and the predicted and actual running times of the benchmark are plotted (y
axis).

13

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Figure 6: Fit of the proposed virtualized performance model. Using C = 9, the number of CPU
cores per compute node used by the calculation. Within the plot, the virtualization ratio is
varied (x axis), and the predicted and actual running times of the benchmark are plotted (y
axis).

14

MS13 - TinyMPI tasking prototype
Version 1.0

Figure 7: Fit of the proposed virtualized performance model. Using C = 12, the number of
CPU cores per compute node used by the calculation. Within the plot, the virtualization ratio
is varied (x axis), and the predicted and actual running times of the benchmark are plotted (y
axis).

15

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Sender Receiver

Ready to Receive (RTR)

Complete (C)

MPI_Send

MPI_Recv

the call returns

the call returns

Figure 8: The flow of the MPI rendezvous protocol [WSB+06].

2.2.3 Derivation of the virtualized model

As V changes, the performance of the application changes too. The U-shape of both the
prediction data and the actual data shows that V influences the performance both negatively
and positively, depending on the value—large enough values of V actually cause a decline in
performance. We can decompose this complex observed effect into factors which improve the
performance and factors which decrease the performance. We will now list these factors, of
which our model includes a subset, and discuss them.

Factors that improve performance (decrease overall running time):

� Improvement in computation–communication overlap.

Factors that worsen performance (increase overall running time):

� Increase in the volume of shared-memory communications.

� Increasing cumulative overhead of the virtualized MPI implementation: more communi-
cation calls and task-switching overhead.

� Replicated serial part of the application.

Improvement in computation–communication overlap (positive influence). Our vir-
tualized model is based on capturing the effect of the improvement in achieved computation–
communication overlap. We do this by modelling an ideal overlap and including an adjustment
factor, which accounts for the non-optimality of overlap in practice.

The “max(cpu, net)” term models the ideal overlap—if the CPU activity and the network
activity are fully overlapped, then their combined running time equals the largest of the two,
since the other is completely hidden. In practice, only a fraction of full overlap will be achieved,
and this fraction should depend on V .

In the following we will be considering the rendezvous protocol of MPI [WSB+06], in which
data transfer is preceded by a handshake between the communicating ranks. The protocol is
summarized in Figure 8. The MPI implementation has to progress the protocol on several
occasions: the sender has to handle an incoming ready-to-receive message, and the receiver has
to handle an incoming ready-to-send message.

The model assumes that the imperfections of overlap come from the fact that CPU-activity
bursts of a currently-computing rank prevent another rank from having its network communica-
tions being progressed by the CPU. In this case, the MPI implementation gets an opportunity to

16

MS13 - TinyMPI tasking prototype
Version 1.0

progress the network protocol only in-between compute bursts. Therefore, if a ready-to-receive
message arrives during a compute burst, it will only be handled when that burst finishes, which
results in lost opportunity for computation–communication overlap. Assuming that a ready-
to-receive message can arrive with equal probability throughout a compute burst, and taking
into account that compute bursts cumulatively amount to Tcomp(N · C · V) units of time, the
expected amount of lost overlap opportunity will amount to half of the total compute time,
which is represented by the 1

2 ·Tcomp(N ·C ·V) term added on top of the max term that models
the ideal full overlap.

Increase in the volume of shared-memory communications (negative influence). As
is evident from the formula, shared-memory communications are considered to belong to CPU
activity, which is because these are usually implemented via a memory copy performed by the
CPU. That is why the Tshmem is added into the cpu term of the virtualized model.

As V increases, the share of the problem assigned to a particular compute node gets split
into progressively smaller pieces, each of which is handled by a separate MPI rank, thus ne-
cessitating communication between them. This additional communication is not present in a
non-virtualized configuration.

The shared-memory communication component of the base application performance model,
Tshmem is multiplied by V in the virtualized model. Each CPU core executes V MPI ranks con-
currently, one at a time, including the Tshmem component of each, which stack up to V · Tshmem

on each CPU core.

Increasing cumulative overhead of MPI (negative influence). Related to the increasing
volume of shared-memory communications, the number of communication calls also increases
with increasing V . In addition to shared-memory communication calls, this also affects net-
work communication calls. The larger the V is, the more communication calls to the MPI
implementation are made. Naturally, each call incurs overhead, which may accumulate into a
considerable amount if V reaches large values.

In our investigation, we have modelled this overhead, denoted Tovhd, as a constant amount of
time per communication call (MPI Isend and MPI Irecv), which was measured empirically. This
cumulative overhead is added to the CPU portion of the virtualized model as the V · Tovhd ·K,
where K is the number of communication calls, both shared-memory and network, made by each
MPI rank during the whole duration of the program. This term was omitted from Equation 4
to avoid clutter. It modifies the cpu component of the model to be of the following form:

cpu = V · Tcomp(N · C · V) + V · Tshmem(N · C · V) + V ·K · Tovhd (5)

Replicated serial part of the application (negative influence). Adhering to the MPI
programming model, each MPI rank effectively executes its own instance of the program, from
the entry point and until termination. This means that the serial part of the algorithm, i.e., the
share of the calculation which is not parallelized, is executed by each MPI rank. A virtualized
MPI implementation runs V MPI ranks per CPU core, which results in V copies of the serial
part of the calculation be executed by each CPU core. The serial phase may include reading
data from a file or building a big data structure, which, if executed V times, may add up to
a considerable amount of time. Therefore, it is important for the base performance model of
the application to take this Tserial into account when formulating the computation-time model
Tcomp.

Now that we discussed the positive and negative influences, we use the discussed equations
to model the computation time and the network time:

17

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

Modelling the computation time. The computation component of the base performance
model, Tcomp, is multiplied by V in the virtualized performance model. This stems from the
fact that each CPU core executes V MPI ranks, each of which spends Tcomp amount of time in
computation. It is important to note that Tcomp is expected to decrease with increasing V for a
fixed global problem size—the more processes participate in a calculation over a fixed domain,
the smaller share of it each process gets assigned—as is expected to be the case with all codes
which decompose the domain.

Modelling the network time. The network component of the base model, Tnet, is also
multiplied by V in the virtualized model. All MPI ranks residing on a particular compute node
will multiplex onto a single network-interface card (or other fixed quantity) in a traditional
architecture. Our model assumes that network operations originating on a compute node do
not get overlapped, which results in the network time being added up, hence the V factor. In our
example, the contention for network bandwidth, both between NICs and from the CPU to the
NIC, is handled by the base performance model (the maxrate model component of Equation 3).

2.2.4 Discussion of the virtualized model

Having described the derivation of the virtualized model, we return to Figures 3 to 7 to analyze
how well the model fits the empirical data.

We can see that for low values of C the model is very close to measured data, and, impor-
tantly, the predicted data traces the shape of the empirical data accurately, which allows the
minimum point of the U-shaped curve to be found exactly, except for the one-off error with
C = 5. However, for the larger values of C the virtualized model underestimates the running
time.

Ultimately, this is caused either by the virtualized model not taking all relevant effects into
account and/or by the inaccuracy of the base performance model of the benchmark application.
The virtualized model’s inaccuracies come from the inaccurate approximation of the degree of
achieved computation–communication overlap—the model overestimates it, resulting in smaller
running time than is measured. In the parameter configurations where the virtualized model is
inaccurate, network-communication time is greater than the CPU-activity time.

3 Conclusion and Future Work

In this report we have presented TinyMPI, a virtualized MPI implementation, and the results
of the research effort of developing a performance model informing the choice of the virtual-
ization ratio (the number of MPI ranks per core), the main parameter of a virtualized MPI
implementation.

A virtualized MPI implementation aims to provide computation–communication overlap, as
well as load balance and other benefits, seamlessly to the user’s MPI application. The main
distinguishing feature of such implementations is that they launch more than one MPI rank per
CPU core, map them to user-level threads, and manage them completely without involving the
operating system’s kernel.

In the future we plan to make TinyMPI easier to use for end-users by providing better
tooling to convert a traditional MPI codes, i.e., a compiler pass which automatically privatizes
shared global variables and rewrites MPI * calls to the appropriate TMPI * ones. This will
also make it easier to perform additional case studies, i.e., using different applications.

18

MS13 - TinyMPI tasking prototype
Version 1.0

Acronyms and Abbreviations

� MPI – Message Passing Interface

� CPU – central processing unit

� ULT – user-level thread

� HPC – high-performance computing

� RDMA – remote direct memory access

� API – application programming interface

� NIC – network interface card

� OS – operating system

19

MB3 MS13 - TinyMPI tasking prototype
Version 1.0

References

[GOS16] William Gropp, Luke N. Olson, and Philipp Samfass. Modeling MPI Communication
Performance on SMP Nodes: Is It Time to Retire the Ping Pong Test. In Proceedings
of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016, pages 41–50, New
York, NY, USA, 2016. ACM.

[MB317] Intermediate report on enhancements to message passing. Deliverable D7.7 of the
Montblanc-3 project, 2017.

[Mes15] Message Passing Interface Forum. Message-Passing Interface, 2015.

[NZP+11] Stas Negara, Gengbin Zheng, Kuo-Chuan Pan, Natasha Negara, Ralph E. Johnson,
Laxmikant V. Kalé, and Paul M. Ricker. Automatic MPI to AMPI program trans-
formation using photran. In Mario R. Guarracino, Frédéric Vivien, Jesper Larsson
Träff, Mario Cannatoro, Marco Danelutto, Anders Hast, Francesca Perla, Andreas
Knüpfer, Beniamino Di Martino, and Michael Alexander, editors, Euro-Par 2010
Parallel Processing Workshops, pages 531–539, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[WSB+06] Tim S. Woodall, Galen M. Shipman, George Bosilca, Richard L. Graham, and
Arthur B. Maccabe. High performance RDMA protocols in HPC. In Bernd Mohr,
Jesper Larsson Träff, Joachim Worringen, and Jack Dongarra, editors, Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, pages 76–85,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[ZNM+11] G. Zheng, S. Negara, C. L. Mendes, L. V. Kale, and E. R. Rodrigues. Automatic
handling of global variables for multi-threaded MPI programs. In 2011 IEEE 17th
International Conference on Parallel and Distributed Systems, pages 220–227, Dec
2011.

20

	Executive Summary
	Implementation of TinyMPI
	Brief description of TinyMPI
	Implementation of TinyMPI
	Using TinyMPI on Dibona

	Virtualization Ratio
	Problem statement
	Modelling the influence of the virtualization ratio
	Performance model of the user application
	The virtualized model
	Derivation of the virtualized model
	Discussion of the virtualized model

	Conclusion and Future Work
	Acronyms and Abbreviations

