
RIVETS: An Efficient Training and Inference
Library for RISC-V with Snitch Extensions

Andrei Ivanov1∗, Timo Schneider1, Luca Benini2 and Torsten Hoefler1

1Department of Computer Science, ETH Zurich
2Department of Information Technology and Electrical Engineering, ETH Zurich

Abstract

The openness and customizability of RISC-V makes it a compelling platform for executing deep learning
applications. We present a library of efficient deep learning kernels for RISC-V hardware, addressing the
challenge of achieving optimal performance in both training and inference. The library adopts the Snitch
extensions to RISC-V, adheres to the OneDNN interface, and offers portable baseline implementations as well
as platform-specific optimizations. Our optimizations that leverage Snitch extensions allow us to achieve up
to 0.87 flops per clock cycle. RIVETS is a valuable tool for deep learning practitioners and researchers using
RISC-V, providing portability, compatibility with other frameworks, and a baseline for performance comparison.

Introduction

The growing interest in running machine learning work-
loads on edge devices has led to the development of
processor architecture variations geared toward power
efficiency. The ARM architecture has long been a pop-
ular choice for energy-efficient computing. Recently,
there has been noticeable attention to exploring the
applicability of open architectures such as RISC-V [1].

While today’s RISC-V cores used in practice are low-
power, inference-oriented [2], there is rising interest in
using this architecture in more demanding workloads,
including training deep learning models [3].

Deep learning libraries The need to run neural
networks on edge devices caused the development of
various libraries targeting specific embedded and low-
power processor architectures.

Popular frameworks for deep learning are Tensor-
Flow and PyTorch. TensorFlow Lite is a toolkit for
deploying TensorFlow models on edge devices. It also
has an extension, TensorFlow Lite for Microcontrollers
targeting highly constrained devices. These libraries
have support for RISC-V, ranging from being compat-
ible with the toolchain to having kernels optimized for
specific hardware. ONNXRuntime is a lower-level tool
that supports training and inference of models created
in the aforementioned frameworks. It also has a port
to RISC-V, but its optimizations are mainly focused
on integer-precision kernels.

The frameworks discussed above typically support
RISC-V through backends that utilize kernels from
hardware-specific libraries. OneDNN contains experi-
mental support for 64-bit RISC-V architectures, but it
currently only has a maximum pooling operator opti-
mized with vector extensions. XNNPACK is a library

∗Corresponding author: {firstname}.{lastname}@inf.ethz.ch

of kernels used by popular ML frameworks, including
TensorFlow and PyTorch. It supports only 6 vec-
torized floating-point element-wise kernels specifically
targeting RISC-V. CMSIS-NN is a neural network ker-
nel library for the ARM architecture. It only supports
integer arithmetic. There are different CMSIS-NN
library ports for RISC-V architectures. One of them,
PULP-NN, is written for the GAP-8 SoC and uses non-
portable platform-specific features. The other port,
muRISCV-NN, targets vector and SIMD extensions,
but only works with integer data.

There are multiple popular deep learning APIs.
CuDNN contains a library of forward and backward
primitives but its API is not standardized as an open
specification. In contrast, ONNX is an open standard,
but its backpropagation specification is not as compre-
hensive. OneDNN defines an open specification with
explicit care of inference and training. The design
of both OneDNN and CuDNN includes two kinds of
APIs: a legacy operator-level API and a graph API
that potentially allows inter-operator optimization. In
our library, we follow the OneDNN operator-level API
to simplify adoption. We maintain a simple build
system that provides RIVETS as a static library to
simplify integration on new platforms. Unlike many
existing implementations, we pay special attention to
floating-point computation.

RISC-V extensions One of the extensions that
entered the RISC-V standard early is the Packed SIMD
extension. It is focused on integer SIMD operations.
Vector floating point instructions are supported by
recently standardized RISC-V Vector extension.

In addition to these standard processor hardware
extensions, there are others which try to remove
the instruction fetching bottleneck occurring in the
hardware. The 32-bit RISC-V core, Snitch [4], adds
Stream Semantic Registers (SSR), floating-point re-

RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

128 KiB
TCDM

(SRAM)

256 MiB
Global Mem

(DRAM)

Core 0: compute
FPU

Core 8: DM
SDMA

Core 7: compute
FPU

Figure 1: Overview of the Snitch cluster environment.

peat (FREP), and asynchronous data movement
(SDMA) extensions. Snitch also has non-standard
smallFloat extension to support 8, 16, and 32-bit
floating point operations on 64-bit wide vectors.

A Snitch cluster is composed out of eight compute
and one data movement core as shown in Figure 1. It
has access to global memory and faster shared memory
(TCDM). We chose Snitch as a reference optimiza-
tion and performance evaluation platform for RIVETS
because of the significant number of floating-point
extensions applicable to DNN kernels.

With the SDMA extension, the data movement
core (DM) can send requests to the hardware DMA
queue and checks the completion status of the request.
This feature accelerates the transfer of strided data
between global memory and TCDM. By supporting
asynchronous transfers, it allows to overlap communi-
cation with computation. Compute cores send memory
copy requests to the DM core via TCDM.

The SSR extension avoids the overhead of fetching
data movement instructions in a hot loop: instead of
incrementing a pointer to iterate over array elements
the increment is performed implicitly and accesses
are made through floating point registers instead of
memory dereferencing.

The FREP instruction can repeat the next N in-
structions M times, saving the cycles that would oth-
erwise be needed to increment the loop counter and
branch to the start of the loop body.

Implementation
for (i = 0; i < N; i++)
 b[i] = f(a[i]);

for (i = 0; i < N1; i++)
for (j = 0; j < N2; j++)
 b[i][j] = f(a[i][j]);

for (i = 0; i < N1; i++) {
 tcdmCopyIn(a1,a[i],N2);
 for (j = 0; j < N2; j++)
 b1[j] = f(a1[j]);
 tcdmCopyOut(b[i],b1,N2);}

SSR: r1->a1[j], r2->b1[j]
for (i = 0; i < N1; i++) {
 tcdmCopyIn(a1,a[i],N2);
 for (j = 0; j < N2; j++)
 r2 = f(r1);
 tcdmCopyOut(b[i],b1,N2);}

SSR: r1->a1[j], r2->b1[j]
for (i = 0; i < N1; i++) {
 tcdmCopyIn(a1,a[i],N2);
 FREP: repeat N2 times
 r2 = f(r1);
 tcdmCopyOut(b[i],b1,N2);}

SSR: r1->a1[j], r2->b1[j]
for (i = 0; i < N1; i++) {
 tcdmCopyIn(a1,a[i],N2);
 OMP: run in T threads
 FREP: repeat N2/T times
 r2 = f(r1);
 tcdmCopyOut(b[i],b1,N2);}

1 2

3
4

5 6

Figure 2: A sketch of the optimization sequence. Loop
unrolling and asynchronous copies are omitted for brevity.

For optimal portability, we developed RIVETS in
C and equipped it with a preconfigured environment
for compilation and profiling on the Snitch platform.
It supports both plain RISC-V kernels and kernels op-

Operation peak ops/cycle latency [cycles]
fma, add, mul 1 4
min, max, abs 1 1
sqrt, div 0.05 22
byte transfer 60 166

Table 1: Operations per cycle in the Snitch core.

Abs
N=10000

Abs
N=40000

BGEMM
B=1 M=128
K=16 N=16

BGEMM
B=32 M=64
K=32 N=32

LayerNorm
B=64 N=64

LayerNorm
B=256 N=256

0

2

4

6

8

flo
ps

/c
yc

le

1 1 1 1 0.9 0.97

3.75 3.75

8 8
7.16

7.77

0.79 0.86 0.83 0.93 0.72 0.8
2.09 2.47

4.71

6.37

3.15
4.31

1-core peak
8-core peak

1-core
8-core

Figure 3: Performance of kernels on Snitch platform.

timized to use the Snitch extensions, as shown in Fig-
ure 2. It works with a flexible number of cores, clusters
and memory sizes. We evaluate our kernels using cy-
cle accurate simulation in the default Snitch cluster
configuration provided in Zaruba et al. [4].

Figure 3 reports the number of flops per clock cycle
for each kernel. To assess how far these results are from
the theoretical peak, we use the platform’s throughput
parameters shown in the Table 1 and the theoretical
number of flops required to execute the kernel. For
example, BGEMM performs B·M·K·N fma operations,
while layer normalization does B(5N+2) fma- and 2B
long-latency (div, sqrt) operations. The peak num-
bers in Figure 3 refer to computational bandwidth
only. The performance of element-wise kernels such
as Abs is IO bound. For small inputs in multi-core
implementations, the latency and bandwidth costs of
transferring data into the TCDM memory significantly
hampers performance.

Our library has been made available to the public1.

Acknowledgement

This work has received funding from the European
High-Performance Computing Joint Undertaking (JU)
under grant agreement No. 101034126 (EU-Pilot).

References

[1] Marcia Sahaya Louis et al. “Towards Deep Learning using
TensorFlow Lite on RISC-V”. In: 2019.

[2] Pasquale Davide Schiavone et al. “Slow and steady wins
the race? A comparison of ultra-low-power RISC-V cores
for Internet-of-Things applications”. In: 2017 27th Inter-
national Symposium on Power and Timing Modeling, Op-
timization and Simulation (PATMOS). 2017, pp. 1–8.

[3] Angelo Garofalo et al. “DARKSIDE: A Heterogeneous
RISC-V Compute Cluster for Extreme-Edge On-Chip DNN
Inference and Training”. In: IEEE Open Journal of the
Solid-State Circuits Society 2 (2022), pp. 231–243.

[4] Florian Zaruba et al. “Snitch: A tiny Pseudo Dual-Issue Pro-
cessor for Area and Energy Efficient Execution of Floating-
Point Intensive Workloads”. In: IEEE Transactions on
Computers (2020).

1 https://github.com/spcl/rivets

2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

https://github.com/spcl/rivets

	Introduction
	Deep learning libraries
	RISC-V extensions

	Implementation
	Acknowledgement

