
rFaaS: Enabling High Performance Serverless with
RDMA and Leases

Marcin Copik∗, Konstantin Taranov†, Alexandru Calotoiu∗, Torsten Hoefler∗
∗Department of Computer Science, ETH Zürich, Zürich, Switzerland

†Microsoft
∗firstname.lastname@inf.ethz.ch, †kotaranov@microsoft.com

Abstract—High performance is needed in many computing sys-
tems, from batch-managed supercomputers to general-purpose
cloud platforms. However, scientific clusters lack elastic par-
allelism, while clouds cannot offer competitive costs for high-
performance applications. In this work, we investigate how
modern cloud programming paradigms can bring the elasticity
needed to allocate idle resources, decreasing computation costs
and improving overall data center efficiency. Function-as-a-
Service (FaaS) brings the pay-as-you-go execution of stateless
functions, but its performance characteristics cannot match
coarse-grained cloud and cluster allocations. To make serverless
computing viable for high-performance and latency-sensitive
applications, we present rFaaS, an RDMA-accelerated FaaS plat-
form. We identify critical limitations of serverless - centralized
scheduling and inefficient network transport - and improve
the FaaS architecture with allocation leases and microsecond
invocations. We show that our remote functions add only
negligible overhead on top of the fastest available networks,
and we decrease the execution latency by orders of magnitude
compared to contemporary FaaS systems. Furthermore, we
demonstrate the performance of rFaaS by evaluating real-world
FaaS benchmarks and parallel applications. Overall, our results
show that new allocation policies and remote memory access help
FaaS applications achieve high performance and bring serverless
computing to HPC.

Index Terms—Serverless, Function-as-a-Service, High-
Performance Computing, RDMA

rFaaS Implementation: https://github.com/spcl/rFaaS
rFaaS Artifact: https://zenodo.org/record/7657524

I. INTRODUCTION

The high-performance computing landscape is dominated
by the Message-Passing Interface (MPI), the de facto standard
distributed programming paradigm. With job batch scheduling
and shared–memory frameworks for multithreading, MPI is
the leading use case for clusters and supercomputers [1]. In
the rigid HPC world, applications with varying parallelism
achieve lower efficiency because adapting resource allocation
to changing requirements is heavily constrained [2, 3]. On
the other hand, the cloud has brought a major innovation
in elastic resource management. While cloud computing has
the hardware capability to support high-performance work-
loads, it lacks programming models for flexible parallelism.
Thus, high-performance applications overprovision computing
resources and increase the data center underutilization, a
problem that has a significant impact as ”increasing utilization
by a few percentage points can save millions of dollars” [4].
Furthermore, HPC units in the cloud can be substantially more

1 2 4 8 16 32 64 128 256 512 1024 2048 5120
Message size [kB]

101

102

103

104

105

106

RT
T

tim
e

[u
se

c]

Warm: 9.3 us
Hot: 5.3 us

rFaaS: 12 GB/s, RDMA

AWS: 19.64 ms
AWS: 17.21 MB/s, HTTP

OpenWhisk: 119.18 ms

OpenWhisk: 1.79 MB/s, HTTP

nightcore: 209.45 us

nightcore: 453.72 MB/s, RPC

rFaaS versus OpenWhisk and nightcore (cluster) and AWS Lambda (cloud).
Round-trip latency of invoking a no-op function.

Fig. 1: The remote invocations of an empty C++ function on
serverless platforms and rFaaS: median (solid), and 99th
latency (dashed) for a single function (details in Sec. V-C).
expensive than existing supercomputing resources1. The rigid
structure of supercomputing systems limits their efficiency, and
HPC applications cannot benefit from cloud elasticity due to
lack of flexible frameworks.

The performance gap between public clouds and HPC data
centers has been shrinking over time. The performance and at-
tractiveness of Infrastructure-as-a-Service (IaaS) resources has
improved [5–7]. Furthermore, virtual machines and containers
have been found to be an efficient abstraction level for high-
performance applications [8, 9]. Thus, parallel applications
running in private data centers and scientific supercomputers
started taking advantage of vast cloud resources [6]. However,
high–performance applications must provision resources for
the peak demand. Thus, they employ complex and domain-
specific optimizations or resort to overprovisioning and un-
derutilizing computing resources. As a result, the resource
utilization in public clouds and private data centers, such as
supercomputers, has always been low for both computing and
memory resources (Sec. II-A). HPC users want to use flexible
allocations and achieve higher efficiency without sacrificing
performance guarantees. Unfortunately, the question of incor-
porating elastic resources into HPC frameworks remains open.

To bridge the gap between HPC clusters and the cloud,
we must incorporate elastic allocations into supercomputers
and decrease HPC computation costs in the cloud. This

1For example, nodes of the Piz Daint supercomputer start at 0.53 CHF
(approximately 0.55 USD) per nodehour. Comparable pay-as-you-go cloud
instances cost at least 1.5 and as high as 4.08 USD. Cheaper cloud instances
require longer-term allocations for many months and provide no flexibility.

https://github.com/spcl/rFaaS
https://zenodo.org/record/7657524

new programming model would need to satisfy two essen-
tial requirements. First, high-performance computing units
should be immediately available to address workload and load
balance changes. However, even as of 2021, acquiring new
Infrastructure-as-a-Service (IaaS) resources in the cloud takes
minutes, not seconds [10]. Similarly, HPC batch systems do
not support dynamic resource reallocation. Second, the model
should allow users to effectively use idle resources. These
can be offered at a significantly lower cost since decreasing
resource waste increases the overall efficiency of a data
center. However, the rapid and frequent utilization changes
on many such platforms (Fig. 2) indicate that persistent and
long-running allocations cannot address these idleness gaps.
Thus, the programming model should use fine-grained and
ephemeral workers to allocate resources with short availability.

Function-as-a-Service (FaaS) is a new cloud paradigm
combining the full elasticity of cloud resources with a maxi-
mally simplified programming model: users program stateless
functions and the cloud completely manages their schedul-
ing. Thanks to the fine-grained parallelism and the pay-as-
you-go billing system, serverless functions could become a
solution for all tasks that benefit from an elastic allocation of
computing resources. Functions are used as elastic workers to
fulfill Service Level Objective (SLO) requirements [11], and
they could implement the HPC-as-a-Service [12]. However,
functions must overcome crucial performance challenges to
become a viable programming model for HPC (Table I).

We address these challenges in rFaaS, an RDMA-capable
serverless platform tailored to the requirements of HPC ap-
plications (Sec. III). We define new RDMA abstractions that
hide the network stack complexity and preserve the elasticity
and isolation of serverless. We improve serverless architecture
with three innovations that integrate into existing designs.
First, rFaaS employs a new resource management policy
where leases replace centralized placement of invocations.
Instead of routing every function to the same warm containers,
leases allow to skip the control logic. Then, we accelerate the
serverless system by reducing its invocation path for high–
priority and low–latency tasks: rFaaS invocations are handled
directly between the client and a function executor. Finally, to
achieve microsecond latency invocations, we replace HTTP
and REST interfaces with an RDMA function dispatch
protocol that removes the milliseconds of OS latency [13].
We show hot invocations with an overhead of a little over
300 nanoseconds on top of the fastest network (Fig. 1).

We present a C++ programming model for straightforward
integration of rFaaS functions into high-performance applica-
tions (Sec. IV). Our work is a major step towards increasing
efficiency by using idle and ephemeral resources for tasks
demanding high performance. We demonstrate the elasticity,
efficiency, and performance of rFaaS with an evaluation of
microbenchmarks, functions, and HPC applications (Sec. V).

Our paper makes the following contributions:
• We present the design and open-source implementation

of the first RDMA-capable serverless platform, including
(1) new FaaS resource management and (2) a novel, low-

Requirements rFaaS Other solutions.

Low-latency invocations Nightcore [14]
Direct allocations
High-speed networks
Decentralized scheduling Wukong [15], Archipelago [16]
Efficient workflows SAND [17], Wukong [15], Cloudburst [18].
Direct communication Boxer [19]

Fast and shared storage Open problem.
Affordable costs Open problem.
Consistent performance Open problem.

TABLE I: rFaaS solves () and enables solutions () to
the major challenges of high-performance FaaS [20–23].

latency, and zero-copy hot type of serverless invocations.
• We conduct an experimental verification against state-of-

the-art open-source and commercial serverless platforms
summarized in Fig. 1 and show that rFaaS has a median
overhead over pure RDMA transmission of little over 300
ns and achieves the available link bandwidth.

• We demonstrate rFaaS usability with real-world server-
less functions and show how the invocation latency is
sufficient to accelerate HPC applications.

II. BACKGROUND

rFaaS solves the utilization problems of data centers by
identifying the opportunity to reuse idle resources (Sec. II-A).
At the same time, modern FaaS platforms are too constrained
(Sec. II-B) to take advantage of high-speed networks and re-
mote memory operations (Sec. II-C), motivating improvements
to the serverless architecture (Sec. III).

04-01
04-02

04-03
04-04

04-05
04-06

04-07
04-08

0

25

50

Id
le

 C
PU

s [
%

]

(a) Idle CPU cores rate (%).
04-01

04-02
04-03

04-04
04-05

04-06
04-07

04-08

80

90

Fr
ee

 M
em

or
y

[%
]

(b) Free memory rate (%).

Fig. 2: Piz Daint supercomputer utilization on 31.03-7.04
2021: querying SLURM with a one-minute interval.

A. Resource Utilization

Low resource utilization has always affected data centers
and it had a vast impact on the financial efficiency of the
system: wasted capital investments into idle resources and
increased operating costs, as the energy usage of servers
doing little and no work is more than 50% of their peak
power consumption [24]. In highly competitive and batch-
managed supercomputers, the average utilization of nodes
varies between 80% and 94% [25–27]. Furthermore, on av-
erage three-quarters of the memory in HPC nodes is not
utilized [28]. We observed similar underutilization problems
in the supercomputing system Piz Daint. Since the idle nodes
are available for a short time (Fig. 2a), opportunistic reuse
for other computations must be constrained to short-running
workloads. To support incoming large-scale jobs, reclaimed
resources must be transient and easily retrievable by the batch
system. Fortunately, large quantities of idle node memory open

Cloud
Triggers

HTTP
Gateway

Function
Managers

A

Function Server

Sandbox

Function ID
Payload

A

Cloud Storage

Database

B C

Persistent
D

Fig. 3: A high-level view of the FaaS architecture.

the possibility of hosting the warm state of ephemeral workers
(Fig. 2b).

Observation Stateless and short-lived functions are a nat-
ural fit for opportunistic computing, and rFaaS can employ
ephemeral HPC resources.

B. FaaS Computing

Function-as-a-Service (FaaS) is a cloud service concerned
with executing stateless and short-running functions. The
serverless functions are dynamically allocated in the cloud,
and the users are freed from the usual responsibilities of
managing resources. The cloud provider charges users only
for the time and resources used in a function execution, and
applications with irregular or infrequent workloads can benefit
from the elastic allocation of computing resources and the
pay-as-you-go billing system. For a cloud operator, the fine-
grained executions provide an opportunity to increase system
efficiency through oversubscription and flexible scheduling.
Platform We characterize the FaaS platforms with a high-level
overview presented in Fig. 3 and refer interested readers to a
wider discussion in the literature [20, 21, 29]. Functions are
invoked via triggers (A), including internal cloud events such
as database update or a new entry in a queue, and the standard
external trigger via a cloud HTTP gateway that exposes
functions to the outside world. A function scheduler (B)
places the invocation in a cloud-native execution environment
(C), and the function code is downloaded from the cloud
storage (D). Function are allowed to initiate connections to
external cloud resources and services, and can also use the
filesystem of its sandbox as a temporary storage. A sandbox
instance handles many consecutive invocations, so resources
are cached and reused across executions.
Invocations Cold invocations occur when no idle sandbox is
available for a given function, and must allocate a new one.
The latency includes an allocation of a new one, downloading
the function code from external storage, and starting an execu-
tor process. In a warm invocation, the function payload is sent
directly to the executing process. While lightweight virtual
machines are designed to support burstable serverless invoca-
tions, even warm invocations can incur significant overheads.
On AWS Lambda, each invocation is processed by a dedicated
management service to decide function placement [30]. The
function input is limited to a few megabytes, so users must
transmit larger payloads via the high-latency cloud storage.
The critical path is even longer in OpenWhisk, as it includes
a controller, database, load balancer, and a message bus [31].
Even though platforms optimize functions to execute in the
same set of warm containers, each invocation includes the
repetitive placement logic of control plane.

In AWS Lambda, the RTT latency changes from 19.5 ms
on 1kB to over 600 ms on 5MB, and it varies between 30 ms
and 75 ms on the size range typical for images passed to ML
recognition functions (Fig. 1). Since routing and allocation
takes at most 10 ms in warm invocations [30], the latency is
dominated by network transmission. Following Amdahl’s law,
utilizing the fast network is the best opportunity to decrease
serverless invocations costs by orders of magnitude.

Observation The multi-step invocation path is a barrier to
achieving zero-copy and fast serverless acceleration. rFaaS
removes the centralized cloud proxies from invocations.

High-Performance Serverless While the elastic parallelism
of FaaS has been used in compute-intensive workloads such
as data analytics, video encoding, and machine learning train-
ing [22, 32, 33], it has only gained minor traction so far in
high-performance and scientific computing [34] due to a lack
of low-latency communication and optimized data movement.
Although recent research improved serverless performance by
including RPC [14], exploiting data locality, and co-locating
invocations [17], latency-sensitive and parallel applications
need fast remote invocations to achieve high scalability.

Observation Connection latency and bandwidth are the
fundamental bottlenecks for remote invocations, yet server-
less platforms do not take advantage of modern network
protocols. rFaaS integrates high-speed RDMA connections.

C. Remote Direct Memory Access

RDMA-capable networks have become a standard tool
for implementing high-performance communication libraries,
distributed protocols, storage, and databases. Unlike in the
TCP/IP stack, RDMA transfers are performed entirely by a
dedicated network controller bypassing both the CPU and
operating system. Data is forwarded over the PCI bus to the
memory, allowing the communicating endpoints to directly
read, write and atomically update memory of its remote coun-
terpart. This communication protocol provides high-speed and
rapid access to other server’s data with a lower CPU utilization
at the cost of a simplified and crude interface. Error-handling
is solely the programmer’s responsibility and achieving the
best performance requires fine-tuning such as aligning mem-
ory, controlling device buffers, locking memory, and utilizing
vendor-specific optimizations. RDMA devices are accessed
in multi-tenant environments through PCI passthrough, para-
virtualization, and virtual device functions [35].

Observation Cloud and HPC applications take advantage
of low overhead and high performance of RDMA networks.
rFaaS adapts FaaS computing to be RDMA-compatible.

III. RDMA-BASED SERVERLESS PLATFORM

rFaaS tailors serverless architectures to the needs of high-
performance applications. In rFaaS, we combine the best of
two worlds - resource flexibility offered by FaaS computing
with the low overhead communication primarily available in

advertise
resources

authentication

D2

Spot Executor ClientResource Manager
rFaaS

Invoker

Function
I/O

A1

Lightweight
Allocator

User Code
Executor

B

Billing Data

Docker RegistryTC
P/IP

List of Resources

A2
RDMARDMARDMA

C1

C2

D1

Fig. 4: rFaaS: resource manager interacts with data center
resources (C) and manages billing (B), clients acquire
FaaS leases (A), and invoke functions (D).

the cloud IaaS resources and HPC clusters. rFaaS improves the
central FaaS paradigm of remote executions by replacing the
REST and RPC invocations with direct memory operations on
remote servers. The enhanced architecture provides the same
semantics of executing user code on ephemeral workers while
avoiding the major performance overheads of serverless.

Our philosophy in implementing rFaaS is to drastically
reduce the critical path of invocations. We achieve this goal by
reducing the number of parties involved in transmitting func-
tion data and removing the centralized gateway and resource
manager from the invocation path. Compared to other architec-
tures (Sec. II-B), we limit resource allocation and authorization
to cold startups, and remove both message queues and the bus
for all warm invocations. First, we introduce leases to optimize
the repeated allocation logic of FaaS control plane (Sec. III-B).
Instead, our functions gain a direct RDMA connection to the
user code executor without sacrificing their serverless nature
(Fig. 4). As in other FaaS platforms, no specific assumptions
about the underlying system and hardware are made. We
capitalize on this gain further by implementing an RDMA-
based invocation designed to minimize latency (Sec. III-C)
and handle parallel executions (Sec. III-D).

A. Components of rFaaS

Resource Manager rFaaS optimizes the FaaS control plane by
splitting allocation and invocation to avoid repeated function
placement in the same small group of containers. Instead,
clients request and receive leases on spot executors (A1). Clus-
ter operators add and remove idle resources to the manager
(C2), and each instance of resource manager is responsible for
a subset of spot executors. With the lease concept, managers
achieve the same load balancing and oversubscription targets
as in other platforms, while keeping the overhead low - they
are not involved in warm and hot invocations, which constitute
the majority of serverless operations. Mangers use heartbeats
to verify the status of spot executor, and announce to clients
the lease termination to support fast resource reclamation.
Spot Executor When clients begin offloading tasks to rFaaS,
they acquire leases on spot executors to achieve the desired
number of parallel workers. These servers offer idle and
unused hardware resources (CPU cores, memory) to support
the dynamic execution of serverless functions. Clients connect
to the lightweight allocator (A2), which is responsible for con-
necting new clients, managing user code executors, removing
processes that are idle for a long time or exceed specified

Manager

Executor

Client

Cold

invoke,
< 1 us + O(n)

allocate executor

pause

Warm Hot

invoke,
< 10us + O(n)

invoke,
< 1us + O(n)

active poll notify thread active poll

allocate
< 2.5 s

sleep

Fig. 5: Lifetime of a function in rFaaS. Cold start times
are dominated by sandbox initialization. Warm and hot
invocation times include rFaaS overhead and latency of
RDMA write of N bytes of payload.
time limits, and accounting for resource consumption. The
allocator initializes an isolated execution context with an
RDMA-capable execution process. Finally, clients can estab-
lish a direct RDMA connection with each executor process
and invoke functions by writing function header and payload
directly into their memory (D2). The results are returned to
the client in a similar fashion, and the client caches the lease
for consecutive invocations on warmed-up resources.

B. Allocation Leases

Decentralized resource management in form of leases is an-
other improvement that rFaaS brings to serverless. To execute
a function, clients involve the resource manager only once
to acquire leases (A1). Clients cache connections to executor
processes and use them for consecutive executions on warmed-
up resources, helping to avoid the initialization costs for
reliable RDMA connections. To support straightforward deal-
location of on-demand executors, clients use the connection
status to check if the process is alive. When users terminate
the allocation before the lease expires, executors notify the
manager to include their resources in future allocations.

C. Low-Latency Invocation

A critical feature of rFaaS is ensuring invocations have the
lowest overhead possible. While an on-demand allocation of
idle resources improves the economics of the data canter, it
would be counterproductive to incorporate rFaaS functions
into high-performance applications if we did not offer fast
invocations. In addition to standard FaaS cold and warm invo-
cations, we provide a new hot invocation type that guarantees
zero-copy execution on pre-allocated hardware (Fig. 5).
Cold The cold invocation includes significant overheads
caused by the initialization of an execution context. In rFaaS,
clients acquire leases by requesting the desired core count,
memory, and timeout for the allocation. Then, the lightweight
allocator initializes an isolated execution sandbox and assigns
the requested computing and memory resources to it. The
user code executor starts in the sandbox, accesses the selected
RDMA device, registers memory buffers, and creates worker
threads pinned to assigned cores. Each executor process has
a configurable number of thread workers who work indepen-
dently, and each one corresponds to a single function instance.
When the initialization is done, the client receives connection
settings, establishes connections to all threads, and invokes

functions by writing requests directly to the workers’ remote
memory. Overall, sandbox initialization adds on average 25 ms
and 2.7 seconds of overhead for bare-metal and Docker-based
executors, respectively, on an HPC node (Sec. V).
Warm The client transmits the function payload using an
RDMA connection to an allocated executor. Executor threads
do not share RDMA resources, and they use blocking wait
independently to receive completion events corresponding to
new warm invocation requests. Using blocking wait increases
latency but significantly decreases the pressure on computing
resources compared to active polling. In the unlikely case of
resource exhaustion on the executor, the invocation request is
immediately rejected and the client redirects the invocation
to another executor (Fig. 6). Compared to native RDMA
performance of a round-trip communication, warm invocations
have an overall overhead of fewer than 6 microseconds.
Hot The novel hot invocation improves the performance of
warm FaaS executions by adding the obligation that threads ac-
tively poll for invocation requests. The busy polling decreases
the invocation latency since threads do not enter a blocked
state to wait for an interrupt generated by the RDMA driver.
The thread enters the hot invocation mode immediately after
execution and polls RDMA events without sleeping to improve
the performance of consecutive invocations. Executors can
roll back to warm executions to free up the CPU after a
configurable time without a new invocation, depending on user
preferences. This configuration decreases the overall overhead
for a round-trip invocation to ca. 300 nanoseconds on average.
However, it comes at the cost of occupying the CPU core
and preventing other functions from using the computing
resources. Therefore, the hot polling time should be accounted
as active computation time. In exchange, users gain always
available computing resources, helping to incorporate func-
tions into HPC applications and support iterative invocations.

D. Scalability

A high-performance serverless platform must handle scaling
in three directions: number of spot executors, number of
rFaaS users, and the number of functions invoked by a client.
Horizontal Scaling The number of spot executors and clients
in rFaaS is bounded by the size of the RDMA network.
Since the network throughput of RDMA connections decreases
significantly with the number of clients [36], the resource
manager is replicated like in other FaaS platforms. While
modern RDMA networks and supercomputers count many
thousands of clients [13] the networks can scale globally
in future cloud deployments. Resources are split between
manager instances and round-robin scheduling allows handling
the increasing number of lease requests from clients.
Parallel Invocations rFaaS allows for simultaneously dis-
patching function execution requests to threads of remote user
executors. The user requests how many function instances
should be used, and the client library manages lease allocations
to reach the desired scale. The client has a direct RDMA
connection to each thread worker and can invoke functions
concurrently. Function workers operating on the same node

Are there allocated
executors?

Find optimal
lease.

Send allocation
requests.

Allocate or reuse
executors.

Initialize
executor threads.

Select executors,
send requests.

Is the executor hot? Execute function. Process result.

Check if the
core is busy.

Acquire exclusive
core access.

Execute
function.

Atomic resource
update.

COLD

WARM

HOT

Yes

Yes
No

Busy Idle

User code executors connect to the client.

No
START

END

Fig. 6: rFaaS invocations include RDMA communication
between clients (), resource manager (), and spot
executors () with user code executors ().

are independent of each other and can all execute different
functions. The scalability is achieved by exploiting the non-
blocking nature of RDMA write operations and using disjoint
memory buffers to store results. Multiple RDMA connections
improve network utilization as more processing units of a
network controller are involved [36]. Each executor thread
switches between hot and warm invocations on its own, further
aiding elasticity.
Oversubscription FaaS platforms oversubscribe resources
since invocations often arrive independently, at different times,
and consume different resources. This aligns well with the
environments of scientific clusters, where large amounts of
free memory can be used to retain more warm sandboxes
than available CPU cores. However, many HPC applications
cannot tolerate the overhead and imbalance introduced by
oversubscribed execution, even if such an event is unlikely.

To that end, hot invocations ensure that the executor oc-
cupies the CPU core and handles the request immediately
(Fig. 6). Since this guarantee is not always needed and can
be expensive. warm invocations are executed opportunistically
on resources that might be oversubscribed. A successful warm
invocation requires only a single, local RDMA communication
between spot executors and its allocator to verify resource
status, thus the additional latency is negligible for larger
function payloads. When resources are unavailable, the request
is rejected, and the client sends it again to another user
code executor. Thanks to the RDMA networking, the rejection
can be processed with microsecond latency, minimizing the
performance hit. Warm invocations avoid interference with
compute-intensive tasks on the same CPU core since rejection
is a short and I/O-intensive process. Hot and warm invocations
can be switched dynamically, providing the performance and
flexibility needed for all types of HPC computations.

E. Isolation and Security

rFaaS aims to provide the same security level as serverless
invocations in the cloud. Multi-tenant environments require
that functions execute in isolation, and the user’s code is
prohibited from accessing any resources, data, and code not
provided with the invocation. Thus, in addition to bare-
metal executors, we include containerized executors. The main
requirements imposed by rFaaS are virtualization support
for RDMA-capable network controllers and negligible perfor-
mance overheads. rFaaS uses Docker containers to implement
isolated execution contexts for user functions. Single Root
I/O Virtualization (SR-IOV) provides high-performance virtu-

Listing 1 rFaaS function interface.
uint32_t f(void* in, uint32_t size, void* out) {
uint32_t in_len = size / sizeof(double);
double* input = reinterpret_cast<double*>(in);
double* output = reinterpret_cast<double*>(out);
// Run function's code.
uint32_t out_len = solve(input, in_len, output);
// Return value defines the output size
return sizeof(double) * out_len;
}

alized network controllers in a multi-tenant environment [37].
On platforms without SR-IOV, we can use software virtual-
ization systems such as FreeFlow [38].

rFaaS leases shift the control plane involvement from each
execution to cold invocations, but they do not introduce
additional security challenges. Leases are time–limited and
include user authentication. Thus, they are similar to batch
system allocations that release resources to a job and per-
form authorization only once. Furthermore, modern RDMA
extensions provide authentication, payload encryption, and
memory protection ensuring secure transmission in multi-
tenant networks [39–41].

F. Modularity

The world of high-performance applications and cloud sys-
tems is rich and diverse. Thanks to its modular design, rFaaS
supports extensions into new environments and hardware.

a) Network: While our implementation manages RDMA
networks with ibverbs, the rFaaS functionality is orthog-
onal to the device interface and can be implemented with
higher-level concepts from libfabric [42]. rFaaS can be
deployed on other networks providing RDMA-like semantics,
such as the Elastic Fabric Adapter in the AWS cloud [43]. In
addition, software virtualization can be employed in data cen-
ters without high-speed networks, offering RDMA semantics
at the cost of higher overheads [38, 44].

b) Language: rFaaS supports C and C++ functions and
native integration into C/C++ applications (Sec. IV). The
language choice is, however, independent from the platform
itself. rFaaS functions can be implemented effortlessly in
languages ABI-compatible with C, such as Rust, and with the
help of foreign-function interface in languages prevalent in the
serverless community, such as Python.

c) Sandbox: rFaaS functions can be served in other
environments than bare-metal processes or Docker containers,
e.g., in HPC container Singularity [45], gVisor [46], and in
microVMs such as Firecracker [30, 47] that provide a higher
level of isolation with negligible performance overheads. New
sandbox types can be integrated effortlessly as long as a
virtualization or passthrough to the RDMA NIC is provided.

IV. RFAAS IN DETAIL

rFaaS functions are deployed as containers (Sec. IV-A).
We improve over the HTTP-based REST interfaces in other
FaaS platforms, and provide a user–oriented C++ interface to
improve performance and hide RDMA complexity (Sec. IV-B).

Promises, FuturesInvokerMemory Allocator

R
D

M
A

Send RecvMemory
Region

RDMA Verbs
Queue Pair

allocate

register

execute notify

connect submit receive

rfaas::invoker

Fig. 7: The programming model of rFaaS, inspired by C++
standarization efforts on the executor concept.

Listing 2 Example of an rFaaS-accelerated application.
void compute(int size, options & opts) {
rfaas::invoker invoker{opts.rnic_device};

① invoker.allocate(opts.lib, opts.size * sizeof(double),
rfaas::invoker::ALWAYS_WARM_INVOCATIONS);

② auto alloc = invoker.allocator<double>{};
// Automatically expanded with function's header

③ rfaas::buffer<double> in = alloc.input(2 * size);
rfaas::buffer<double> out = alloc.output(2 * size);
// Offload part of the computation to rFaaS

④ auto f = invoker.submit("task", in, size, out);
local_task(in.data() + size, out.data() + size, size);

⑤ f.get();
⑥ invoker.deallocate(); // Release computing resources.
}

A. Function Deployment

Listing 1 presents the standard function interface in rFaaS.
Input is written to memory buffers of the user code executor.
while the RDMA immediate value contains an invocation
identifier and a function index. The function returns the
number of bytes in the output array sent back to the client. The
input buffer contains a twelve-byte header with an address and
access key for a buffer on the client’s side, and the executor
writes the output directly to the client’s memory.

rFaaS supports the execution of arbitrary functions, and
similarly to the function app offered by Azure Functions, we
enable the execution of different functions in the same worker
process. Serverless functions are deployed as containers with
code and all dependencies. The image is enriched with rFaaS
RDMA executor and placed in a Docker registry.

B. Programming Model

To design the programming interface for rFaaS, we take
inspiration from recent developments in the C++ standard for
parallel and asynchronous executors [48]. The prior work on
executors and their implementations proved that this concept
is an efficient interface for dispatching tasks to accelerator
devices [49, 50]. The programming model presented in Fig. 7
hides the complexity of RDMA verbs under a lightweight C++
abstraction. As a result, it can be easily integrated into existing
parallel applications as presented in Listing 2, and it can be
adapted in the future to full compatibility with C++.
Memory Allocator The memory allocator (②) provides
RDMA-enabled memory buffers and encapsulates the memory
region reserved for the function header (③). The allocator can
be integrated effortlessly to serialize standard C++ containers
such as std::vector and std::array, and all memory buffers are
page-aligned to achieve the highest bandwidth on RDMA [51].

Invoker The client’s invoker submits remote function invo-
cations (④). It manages RDMA connections and implements
the allocation and deallocation of leases. The status of the
computation can be queried with busy polling to minimize
latency, and we use the std::future to represent the result
of unfinished executions. Users can query the status of each
invocation, wait for its completion, and access the result later
(⑤). Internally, the library runs a single thread that waits for
RDMA completion events and modifies future’s status when
the corresponding invocation finishes. While blocking wait
has a higher latency than active polling [52], the background
thread sleeps, helping to reduce CPU consumption.

The allocation of rFaaS functions can be performed ahead
of time (①) to hide the cold invocation latencies since warm
executor threads are sleeping and not incurring major charges.
Remote resources are allocated and deallocated as needed (⑥),
adjusting to the varying parallelism and workload.

C. Billing

rFaaS uses a pricing model similar to provisioned serverless
functions to include active hot polling. The billing model
includes three cost components: allocation time Ca, hot polling
Ch, and active computation time Cc.

C = Ca · ta + Cc · tc + Ch · th
The total allocation ta measured is calculated across all ex-
ecutors as a product of allocation time and memory requested,
whereas the active computation time tc and hot polling time
th, measured in seconds, represent the total time all remote
workers were busy with executing functions and polling for
new invocations, respectively. Thus, cluster operators can en-
courage warm invocations to boost utilization through resource
overallocation, while applications requiring the highest perfor-
mance pay the premium for nanosecond invocation overheads.
The billing procedure is implemented in a global database as-
sociated with the resource manager using RDMA atomic fetch-
and-add operations, providing lightweight allocators with an
RDMA-native way of accumulating cost results.

V. RFAAS IN PRACTICE

To demonstrate the fitness of rFaaS for HPC, we answer
critical questions in the form of extensive evaluation.

1) Is rFaaS fast enough for high performance, latency-
sensitive applications?

2) Are the overheads for initialization prohibitively large?
3) Does the rFaaS bandwidth scale with larger payloads?
4) Does rFaaS scale with more parallel workers?
5) Does rFaaS integrate functions into HPC applications?
6) Is the performance of remote computing with rFaaS

competitive compared to local computation?
7) Are short rFaaS functions usable in HPC computations?

Platform We deploy rFaaS in a cluster and execute benchmark
code on 4 nodes, each with two 18-core Intel Xeon Gold
6154 CPU @ 3.00GHz and 377 GB of memory. The nodes
are equipped with a Mellanox MT27800 Family NIC with a
100 Gb/s Single-Port link configured with RoCEv2 support.
Nodes communicate with each other via a switch, and we

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Message size [bytes]

4
5
6

10

20

RT
T

tim
e

[u
se

c]

Inlining effects
rFaaS hot latency: 3.96 usec

rFaaS warm latency: 8.2 usec

RDMA TCP/IP rFaaS Hot rFaaS Warm

Fig. 8: The RTT of an no-op rFaaS function and network
transport, median (solid) and 99th latency (dashed).
measured an RTT latency of 3.69 µs and a bandwidth of
11,686.4 MiB/s. We use Docker 20.10.5 with the executor
image ubuntu:20.04, and we use Mellanox’s SR-IOV
plugin to run containers over virtual device functions. rFaaS
is implemented in C++, using g++ 8.3.1.

A. Invocation Latency

We begin by measuring the hot and warm invocation latency,
using a no-op ”echo” function that returns the provided input.
We use a warmed-up, single-threaded, bare-metal executor
with the main thread pinned to a CPU core, perform 10,000
repetitions, and report the median. We compute the non-
parametric 99% confidence intervals of the median and find
that the interval bounds are very tight (< 1%). To assess
the overheads of rFaaS invocations, we measure the latency
of RDMA and TCP/IP transmissions. For the former, we
report the median of the ib write lat benchmark executed with
thread pinning. For the latter, we report the mean of netperf
used with page-aligned buffers and process pinning.

Fig. 8 shows that the overhead imposed by processing a
no-op function by rFaaS in a process is 326 ns on average,
compared to the baseline RDMA data transmission. The
measurements for a Docker-based executor present additional
ca. 50 ns overhead over RDMA writes when using a container.
The only exception is the message size of 128 bytes, where the
overhead increases to 630 ns. There, RDMA can use message
inlining for both directions of transmission to improve perfor-
mance of small messages [36]. However, the communication
in rFaaS is asymmetric: we transmit 12 more bytes for the
input, forcing us to use non-inlined write operations in one
direction. The average overhead of a warm execution is 4.67
µs, and containerization adds a latency of ca. 650 ns.

With slightly more than 300 ns of overhead, we enable
remote invocations without noticeable performance penalty,
conclusively answering: rFaaS is fast enough for latency-
sensitive, high-performance applications.

B. Cold Invocation Overheads

Fig. 9a and 9b present the overhead of a single cold
invocation on a bare-metal and Docker-based executor, re-
spectively. The data comes from 1000 invocations with a
single no-op C++ function, compiled into a shared library
of size 7.88 kB. In all tested configurations, the longest step

100

120
Tim

e [
m

s]

1 B
 1 Worker

1 MB
 1 Worker

1 B
 32 Workers

1 MB
 32 Workers

0

20

(a) Bare-metal Linux process

2600

2700

Tim
e [

m
s]

1 B
 1 Worker

1 MB
 1 Worker

1 B
 32 Workers

1 MB
 32 Workers

0

20

Connect to manager
Submit allocation

Spawn worker
Submit code

Invoke

(b) Docker container

Fig. 9: Cold invocations of rFaaS functions.
is the creation of workers. All other steps: the connection
establishment to the manager, submitting an allocation and
code, and code invocation, take single-digit milliseconds to
accomplish. Therefore, we can claim that rFaaS does not intro-
duce significant overheads in addition to sandbox initialization.

While the current version of Docker with SR-IOV shows
an overhead of approximately 2.7 seconds to spawn workers,
low-latency approaches can reduce this time to as little as
125 milliseconds [30]. Thus, it is compatible with proposed
approaches to reduce cold startup latencies, such as container
warming and reinitialization. Finally, the user’s function can be
deployed as a code package like in many other FaaS platforms,
allowing executor managers to keep a pool of generic and
ready containers and bypass the container startup latency.

We therefore claim that cold invocation overheads of
rFaaS do not pose an obstacle for the use in HPC.

C. Bandwidth scalability

To compare the performance of rFaaS and other platforms,
we evaluate a non-op C++ function that returns the input
provided in a payload range from 1 kB to 5 MB. Since
other platforms cannot accept raw data, we generate a base64-
encoded string that approximately matches the input size.

We compare with AWS Lambda, a state-of-the-art commer-
cial FaaS solution, as neither Azure Functions nor Google
Cloud Functions support C++ functions. Then, we compare
against open-source FaaS platforms OpenWhisk and Night-
core [14], a low-latency and open-source serverless platform.
Both open-source systems are deployed in the same RDMA-
capable cluster as rFaaS, using the same network and CPU re-
sources as our system. In Lambda, we deploy a native function
implemented with C++ Runtime, expose an HTTP endpoint
with no authorization, and run the experiment in an AWS
t2.micro VM instance in the same region as the function. We
deploy on our cluster a standalone OpenWhisk using Docker
with Kafka and API gateway. A C++ function in OpenWhisk

is invoked as a regular application, accepting inputs not greater
than 125 kB through argc and argv. Similarly, we deploy the
function in a nightcore instance in the cluster.

We present the evaluation result in Fig. 1 (page 1). On
all payload sizes, rFaaS clearly provides significantly better
performance. rFaaS invocations are between 695x and 3,692x
faster than AWS Lambda executions. Stable measurements on
the no-op function indicate that the difference is not caused
by shared CPU resources of the cloud, but by the low-latency
network and native support for transmitting raw data. rFaaS
is between 23x and 39x faster than Nightcore when running
on the same hardware. Similarly, rFaaS provides a speedup
between 5,904x and 22,406x when compared to OpenWhisk.

rFaaS provides significant performance improvements over
current FaaS platforms and scales well with message size.

2 8 32
Remote executor workers

0

20

40

RT
T

tim
e

[u
se

c]

Contention on RDMA
notifications

Bandwidth not
saturated

1 kB message

2 8 32
Remote executor workers

0

2

4

RT
T

tim
e

[m
s] rFaaS achieves the

maximal bandwidth
of the link

1 MB message

rFaaS Hot rFaaS Warm RDMA Bandwidth

Fig. 10: rFaaS invocations on parallel executors.

D. Parallel scalability

To verify that RDMA-capable functions scale efficiently
to handle integration into scalable applications, we place
managers on 36-core CPUs and evaluate parallel invocations.
We execute the no-op function on warmed-up, bare-metal
executors having allocated from 1 to 32 worker threads.

Fig. 10 presents the round-trip latencies for invoking func-
tions with 1 kB and 1MB payloads, respectively. The overhead
of handling many concurrent connections is insignificant on
hot invocations with a smaller payload. While the Docker
executor shows performance increases (hot) and decreases
(warm) on the 1 kB payload, the difference on 1MB payload is
less than 1%. However, execution times increase significantly
with the number of workers when sending 1 MB data, due to
saturating network capacity (100 Gb/s). This shows that rFaaS
scaling is limited only by the available bandwidth.

Therefore, we claim that parallel scaling of rFaaS execu-
tors is bounded only by network capacity.

E. Use-case: serverless functions

To evaluate the effectiveness of rFaaS in integrating server-
less functions into high-performance applications, we select
real-world serverless functions from the SeBS benchmark [21].
We take the thumbnailer benchmark as an example of general-
purpose image processing and the image-recognition bench-
mark performing ResNet-50 prediction as an example of

0

50

100

150

200

Ti
m

e
[m

s]

4.4 4.4 7.6 7.6

Warm Hot Warm Hot 12
8

51
2

10
24

15
36

20
48

30
72

rFaaS,
Baremetal

rFaaS,
Docker AWS

0

500

1000

1500

2000

115.4
114.7

195.9
195.6

Warm Hot Warm Hot 51
2

10
24

15
36

20
48

30
72

rFaaS,
Baremetal

rFaaS,
Docker AWS

Small input Large input

(a) Image processing: thumbnail generation: AWS Lambda and rFaaS.

0

500

1000

1500

Ti
m

e
[m

s]

112.0
112.1

117.9
117.9

Warm Hot Warm Hot 51
2

10
24

15
36

20
48

30
72

rFaaS,
Baremetal

rFaaS,
Docker

AWS

0

500

1000

1500

114.8
114.8

121.7
121.7

Warm Hot Warm Hot 51
2

10
24

15
36

20
48

30
72

rFaaS,
Baremetal

rFaaS,
Docker

AWS

Small input Large input

(b) Image recognition with ResNet-50 and PyTorch: AWS Lambda, rFaaS.

Fig. 11: rFaaS on serverless functions.
integrating deep-learning inference into applications. We reim-
plement the Python benchmarks in C++ and deploy them as
Docker images on rFaaS and AWS Lambda. We repeat each
benchmark 100 times.

a) Image processing: We implement the thumbnail gen-
eration with OpenCV 4.5. We evaluate functions with two
images, 97 kB small one and a 3.6 MB large one (Fig. 11a).
For the AWS Lambda function, we need to submit the binary
image data as a base64-encoded string in the POST request,
which adds the overhead of encoding and conversions. On the
other hand, rFaaS functions benefit from the payload format
not constrained by cloud API requirements.

b) Image registration: We implement the benchmark
with the help of PyTorch C++ API, using OpenCV 4.5, libtorch
1.9, and torchvision 0.1. We convert the Python serialized
model included with SeBS into the recommended TorchScript
model format. The model is included with the Docker image
and stored in the function memory after the first invocation.
We evaluate functions with two inputs, a 53 kB small image
and a 230 kB large one (Fig. 11b). There is a growing interest
in using machine-learning inference to speed up computations
and simulations [53–55]. The results demonstrate that rFaaS
functions can efficiently implement inference tasks in high-
performance applications.

F. Use-case: parallel offloading

We want to answer the next question: can rFaaS of-
fload computations efficiently to remote serverless work-
ers? We study offloading of massively parallel computations
with significant data movement. We select the Black-Scholes
solver [56] from the PARSEC suite [57] parallelized with
OpenMP threading. Black-Scholes solves the same partial
differential equation for different parameters, and we dispatch

1 4 8 12 16 20 24 28 32
Parallelism

0

200

400

Ti
m

e
[m

s]

rFaaS on par with
local parallelism.

Parallel faster
than network
transmission.

OpenMP rFaaS OpenMP + rFaaS

1 4 8 12 16 20 24 28 32
Parallelism

0

5

10

15

20

Sp
ee

du
p

pa
ra
lle
l

se
ria

l

Performance boost
through FaaS offloading.

Fig. 12: Parallel serverless computing with rFaaS and
OpenMP. Medians with non-parametric 95% CIs.

400 500 600 700 800
Matrix size

0.0

0.5

1.0

Ti
m

e
[s

]

MPI + rFaaS

MPI

Average speedup:
1.88x-1.97x.

16 processes
32 processes

64 processes

(a) Matrix-matrix multiplication.

500 1000 1500 2000 2500
Linear system size

0

5

10

15

Ti
m

e
[s

]

MPI + rFaaS

MPI
Speedup on large

system sizes:
1.7x-1.95x.

16 processes
32 processes

64 processes

(b) Jacobi method, 100 iterations.

Fig. 13: MPI (solid) versus MPI + rFaaS (dashed), reported
medians with non-parametric 95% CIs.
independent equations to bare-metal parallel executors. We
evaluate the benchmark with approx. 229 MB of input and
38 MB of output and present results in Fig. 12.

We show that offloading the entire work to rFaaS scales
efficiently compared to OpenMP, as long as the workload
per thread is not close to the network transmission time of
approximately 20 ms. We can further speed up the OpenMP
application by offloading half of the work to the same number
of serverless functions (OpenMP + rFaaS). Since other high-
performance FaaS systems achieve a fraction of available
bandwidth (Sec. V-C), their runtime will be dominated by the
transmission of 229MB of data to functions. Thus, we can
conclude that rFaaS offers scalable parallelism bounded
by network performance only.

G. Use-case: HPC Applications

The next question we want to answer is: how much perfor-
mance can be gained by offloading complex tasks to the cheap
and spare capacity of HPC clusters?

a) Matrix-matrix multiplication: We run an MPI applica-
tion where each rank performs a matrix-matrix multiplication,
averages it over 100 repetitions, and we measure the median
kernel time across MPI ranks. MPI ranks are distributed across
two 36-core nodes, and we pin each rank to a single core.
Then, we deploy an MPI + rFaaS application where each rank
allocates a single bare-metal rFaaS function. rFaaS executors
are deployed on two other 36-core nodes, and with such
concentration of MPI and rFaaS computing resources, we
show that sharing the network bandwidth does not prevent

efficient serverless acceleration. Due to a high computation
to communication ratio, we split the workload equally, and
both MPI rank and the function compute half of the result
matrix. Figure 13a shows rFaaS provides a speedup between
1.88x and 1.94x depending on the number of MPI processes.
Functions with a good ratio of computation to unique memory
access can be accelerated with rFaaS. As long as this condition
is satisfied, rFaaS improves the performance of HPC
workloads.

b) Jacobi linear solver: To show a serverless accelera-
tion of a bulk synchronous type of problem, we consider the
Jacobi linear solver, where half of each iteration is offloaded to
rFaaS. Here, we perform a classical serverless optimization of
caching resources in a warmed-up sandbox. Since the matrix
and right-hand vector do not change between iterations, we
submit them only for the first invocation. As long as the
allocated function is not removed, we send only an updated
solution vector in subsequent iterations.

We evaluate the approach in the same setting as matrix
multiplication (Section V-G0a), with MPI ranks averaging
the Jacobi method with 1000 iterations over ten repetitions,
and measure a speedup between 1.7 and 2.2 when rFaaS
acceleration is used. Since each iteration takes just between 1
and 15 milliseconds, the results must be returned with minimal
overhead to offer performance comparable with the main MPI
process. the low-latency invocations in rFaaS apply to
millisecond-scale computations.

VI. RELATED WORK

FuncX [58] is a federated platform that brings function
abstraction to scientific computing. Nonetheless, FuncX does
not take advantage of high-speed networks and implements
a hierarchical and centralized design with long invocation
paths between clients and remote workers. As a result, even
warm invocations take at least 90ms. Nightcore [14] is a
high-performance FaaS runtime designed for microservices,
with optimized internal function calls — invocations that
can be satisfied locally, without inter-node communication.
SAND [17] optimizes workflows of serverless functions with
grouping of functions and dedicated message buses. In con-
trast, rFaaS exploits co-location via explicit parallelism of
executor allocation and optimizes invocation latencies through
RDMA communication. Archipelago [16] and Wukong [15]
perform latency-aware scheduling of directed acyclic graph
(DAG) of functions. Wukong uses a decentralized and dynamic
scheduling built on top of AWS Lambda, while Archipelago
focuses on resource partitioning for decentralized schedulers
and optimizing the control plane. In rFaaS both allocation and
invocation are decentralized and optimized with a direct client-
worker connection. SmartNICs have been shown to provide
fast dispatching and orchestration in FaaS [59, 60]. However,
functions are limited by restricted implementation language
and low-performance RISC cores. Other improvements and
optimization strategies, such as warming, provisioning and
fast startup solutions for sandboxes [61, 62], are orthogonal to
rFaaS and can be implemented in our platform as well. RDMA

has been used in the serverless context for resource disaggre-
gation [63] and heterogeneous systems [64]; rFaaS optimizes
FaaS architecture and is tailored for HPC computing.

Remote Invocations Remote Procedure Calls (RPC) [65]
and Active Messages [66] invoke a procedure remotely on
another machine. Active Networks include capsules with
user code that can be executed on selected routers [67]. In
comparison, rFaaS provides the elasticity of executing on
dynamically allocated resources with the pay-as-you-go billing
instead of requiring provisioned resources. We enable multi-
tenant computations on a single server by providing isolation.
Since rFaaS does not send code with invocation, we provide a
protection boundary between caller and callee needed to access
private resources, e.g., in ML inference serving.

VII. DISCUSSION

In this paper, we introduce RDMA abstractions into FaaS
to facilitate the integration of functions into high-performance
and latency-sensitive applications. rFaaS can positively impact
other aspects of serverless systems, and we now discuss how
our protocols combine with other emerging solutions in FaaS.

Which workloads will benefit from rFaaS? High-
performance and parallel applications need scalable invo-
cations of remote workers (Sec. V-D) and high network
bandwidth to support simultaneous invocations by parallel
processes on the same node (Sec. V-C). Furthermore, data-
intensive workloads will benefit from RDMA-accelerated FaaS
computing since other platforms cannot achieve high through-
put on networks that support the transmission of gigabytes
of data per second. Examples include, but are not limited to,
machine-learning inference, data analytics, GPU-accelerated
functions with short computation time, and task-based appli-
cations with no memory sharing between tasks [68].

On the other hand, HPC applications that will likely not ben-
efit from rFaaS offloading include memory-bound operations
with a low ratio of computation to accessed data. Furthermore,
applications that already achieve high resource utilization have
little motivation to look into serverless in the first place, e.g.,
applications with static parallelism and homogenous resource
requirements.

Can rFaaS improve serverless workflows? In workflows,
functions are composed to build serverless applications, using
a coordination service to orchestrate invocations and data prop-
agation [69]. While SmartNICs offer fast orchestration [59],
they are limited by the cost and availability of dedicated
NICs. Instead, implementing orchestrator with rFaaS execu-
tors achieves two performance goals: single-digit microsecond
latency overhead of invocations and efficient data movement.

Can rFaaS support the diverse world of HPC systems?
Thanks to its modular design, rFaaS supports extensions
into new environments and hardware. rFaaS functionality and
RDMA abstractions are orthogonal to the device interface,
and network management with ibverbs can be extended
with new network drivers and software virtualization for
RDMA [38]. rFaaS supports native integration into C/C++

applications (Sec. IV), but the language choice is indepen-
dent of the platform itself. Functions and integration can be
implemented through ABI compatibility and foreign-function
interfaces, supporting languages such as Fortran and Python.
rFaaS functions can be served in containers other than Docker,
e.g., in HPC container Singularity, as long as they provide
access to the RDMA NIC.

VIII. CONCLUSIONS

Fine-grained and granular computing need systems designed
to handle microsecond-scale workloads [23, 70], but FaaS
platforms still operate at the millisecond latency. rFaaS at-
tempts to solve this problem at three levels: a novel direct
and decentralized scheduling to reduce serverless critical path,
incorporation of high-speed networks to achieve microsecond-
latency, and inclusion of remote memory access to remove
overheads of the OS control plane. With RDMA-capable
functions, we demonstrate hot invocations with less than
one microsecond of overhead and efficient parallel scalabil-
ity, providing serverless programmability in high-performance
systems and applications, and paving the way for future low-
latency and fine-grained computing.

ACKNOWLEDGMENT

This project has received funding from the Eu-
ropean Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 programme (grant
agreement EPIGRAM-HS, No. 801039, and grant
agreement RED-SEA, No. 955776), and from
the Schweizerische Nationalfonds zur Förderung der wis-
senschaftlichen Forschung (SNF, Swiss National Science
Foundation) through Project 170415. We would also like to
thank the Swiss National Supercomputing Centre (CSCS) for
providing us with access to their supercomputing machines
Daint and Ault. We also thank anonymous reviewers for
helping us improve the manuscript.

REFERENCES
[1] P. Prabhu et al., “A survey of the practice of computational science,” in SC ’11.
[2] D. G. Feitelson et al., “Toward convergence in job schedulers for parallel supercomputers,”

in Job Scheduling Strategies for Parallel Processing, 1996.
[3] A. Raveendran et al., “A framework for elastic execution of existing mpi programs,” in 2011

IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum.

[4] A. Verma et al., “Large-scale cluster management at google with borg,” in EuroSys ’15.
[5] Y. Zhai et al., “Cloud versus in-house cluster: Evaluating amazon cluster compute in-

stances for running mpi applications,” in SC, 2011.
[6] M. A. S. Netto et al., “Hpc cloud for scientific and business applications: Taxonomy, vision,

and research challenges,” ACM Comput. Surv., vol. 51, 2018.
[7] J. Zhang et al., “High performance mpi library for container-based hpc cloud on infiniband

clusters,” in ICPP, 2016.
[8] W. Huang et al., “A case for high performance computing with virtual machines,” in ICS

’06.
[9] C. Ruiz et al., “Performance evaluation of containers for hpc,” in Euro-Par 2015: Parallel

Processing Workshops.
[10] J. Hao et al., “An empirical analysis of vm startup times in public iaas clouds,” in CLOUD,

2021.
[11] J. R. Gunasekaran et al., “Spock: Exploiting serverless functions for slo and cost aware

resource procurement in public cloud,” in CLOUD, 2019.
[12] M. AbdelBaky et al., “Enabling high-performance computing as a service,” Computer,

vol. 45, 2012.
[13] C. Guo et al., “Rdma over commodity ethernet at scale,” in Proceedings of the 2016 ACM

SIGCOMM Conference.
[14] Z. Jia et al., “Nightcore: Efficient and scalable serverless computing forlatency-sensitive,

interactive microservices,” in ASPLOS ’21, 2021.
[15] B. Carver et al., “Wukong: A scalable and locality-enhanced framework for serverless

parallel computing,” in SoCC ’20.
[16] A. Singhvi et al., “Archipelago: A scalable low-latency serverless platform,”

arXiv:1911.09849, 2019.

[17] I. E. Akkus et al., “Sand: Towards high-performance serverless computing,” in ATC ’18.
[18] V. Sreekanti et al., “Cloudburst: Stateful functions-as-a-service,” Proc. VLDB Endow.,

vol. 13, 2020.
[19] M. Wawrzoniak et al., “Boxer: Data analytics on network-enabled serverless platforms,” in

CIDR’21.
[20] E. Jonas et al., “Cloud programming simplified: A berkeley view on serverless computing,”

arXiv:1902.03383, 2019.
[21] M. Copik et al., “Sebs: A serverless benchmark suite for function-as-a-service computing,”

in Middleware ’21.
[22] J. Jiang et al., “Towards demystifying serverless machine learning training,” in SIGMOD

2021.
[23] P. G. Lopez et al., “Serverless predictions: 2021-2030,” arXiv:2104.03075, 2021.
[24] L. A. Barroso et al., “The case for energy-proportional computing,” Computer, vol. 40, 2007.
[25] H. You et al., “Comprehensive workload analysis and modeling of a petascale supercom-

puter,” in Job Scheduling Strategies for Parallel Processing, 2013.
[26] T. Patel et al., “Job characteristics on large-scale systems: Long-term analysis, quantifica-

tion, and implications,” in SC ’20.
[27] M. D. Jones et al., “Workload analysis of blue waters,” arXiv:1703.00924, 2017.
[28] G. Panwar et al., “Quantifying memory underutilization in hpc systems and using it to

improve performance via architecture support,” in MICRO ’52, 2019.
[29] L. Wang et al., “Peeking behind the curtains of serverless platforms,” in ATC ’18.
[30] A. Agache et al., “Firecracker: Lightweight virtualization for serverless applications,” in

NSDI 20, 2020.
[31] M. Sciabarrà, Learning Apache OpenWhisk: Developing Open Serverless Solutions.

O’Reilly Media, Incorporated, 2019.
[32] I. Müller et al., “Lambada: Interactive data analytics on cold data using serverless cloud

infrastructure,” arXiv:1912.00937, 2019.
[33] S. Fouladi et al., “Encoding, fast and slow: Low-latency video processing using thousands

of tiny threads,” in NSDI’17.
[34] G. Parı́s et al., “Serverless elastic exploration of unbalanced algorithms,” in CLOUD, 2020.
[35] V. Mauch et al., “High performance cloud computing,” Future Generation Computer

Systems, vol. 29, 2013.
[36] A. Kalia et al., “Using rdma efficiently for key-value services,” in SIGCOMM ’14.
[37] Y. Dong et al., “High performance network virtualization with sr-iov,” in HPCA, 2010.
[38] D. Kim et al., “Freeflow: Software-based virtual RDMA networking for containerized clouds,”

in NSDI 19, 2019.
[39] K. Taranov et al., “sRDMA – efficient NIC-based authentication and encryption for remote

direct memory access,” in ATC 20, 2020.
[40] A. Singhvi et al., “1rma: Re-envisioning remote memory access for multi-tenant datacen-

ters,” in SIGCOMM ’20.
[41] “IPsec over RoCE, Mellanox,” https://community.mellanox.com/s/article/

ConnectX-6DX-Bluefield-2-IPsec-HW-Full-Offload-Configuration-Guide, 2021,
accessed: 2022-01-12.

[42] “libfabric, Open Fabric Interfaces,” https://github.com/ofiwg/libfabric, 2021, accessed:
2022-01-12.

[43] “AWS Elastic Fabric Adapter,” https://aws.amazon.com/hpc/efa/, 2021, accessed: 2022-
01-12.

[44] “The Linux SoftRoCE Driver,” https://www.youtube.com/watch?v=NumH5YeVjHU, 2017,
accessed: 2022-01-12.

[45] G. M. Kurtzer et al., “Singularity: Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, 2017.

[46] E. G. Young et al., “The true cost of containing: A gvisor case study,” in HotCloud 19, 2019.
[47] “Firecracker,” https://github.com/firecracker-microvm/firecracker, 2018, accessed: 2022-

01-12.
[48] “P0443R14: A Unified Executors Proposal for C++,” https://wg21.link/p0443r14, 09 2020,

accessed: 2022-01-12.
[49] T. Heller et al., “Closing the performance gap with modern c++,” in High Performance

Computing, 2016.
[50] M. Copik et al., “Using sycl as an implementation framework for hpx.compute,” in IWOCL

2017.
[51] A. Kalia et al., “Design guidelines for high performance RDMA systems,” in ATC 16, 2016.
[52] P. MacArthur et al., “A performance study to guide rdma programming decisions,” in 2012

IEEE 14th International Conference on High Performance Computing and Communication
2012 IEEE 9th International Conference on Embedded Software and Systems.

[53] A. Brace et al., “Achieving 100x faster simulations of complex biological phenomena by
coupling ml to hpc ensembles,” arXiv:2104.04797, 2021.

[54] M. Wang et al., “Gpu-accelerated machine learning inference as a service for computing
in neutrino experiments,” Frontiers in Big Data, vol. 3, 2021.

[55] J. Krupa et al., “GPU coprocessors as a service for deep learning inference in high energy
physics,” Machine Learning: Science and Technology, vol. 2, 2021.

[56] A. Heinecke et al., “A highly parallel black–scholes solver based on adaptive sparse grids,”
Int. J. Comput. Math., vol. 89, 2012.

[57] C. Bienia et al., “The parsec benchmark suite: Characterization and architectural implica-
tions,” in PACT ’08.

[58] R. Chard et al., “Funcx: A federated function serving fabric for science,” in HPDC ’20.
[59] N. Daw et al., “Speedo: Fast dispatch and orchestration of serverless workflows,” in SoCC

’21.
[60] S. Choi et al., “λ-nic: Interactive serverless compute on programmable smartnics,” in

ICDCS, 2020.
[61] E. Oakes et al., “SOCK: Rapid task provisioning with serverless-optimized containers,” in

ATC 18, 2018.
[62] D. Du et al., “Catalyzer: Sub-millisecond startup for serverless computing with initialization-

less booting,” in ASPLOS ’20.
[63] Z. Guo et al., “Resource-centric serverless computing,” arXiv preprint arXiv:2206.13444,

2022.
[64] D. Du et al., “Serverless computing on heterogeneous computers,” in ASPLOS ’22.
[65] B. J. Nelson, Remote procedure call. Carnegie Mellon University, 1981.
[66] T. v. Eicken et al., “Active messages: A mechanism for integrated communication and com-

putation,” in [1992] Proceedings the 19th Annual International Symposium on Computer
Architecture.

[67] D. Wetherall et al., “Active network vision and reality: Lessions from a capsule-based
system,” in SOSP ’99.

[68] M. Copik, T. Grosser, T. Hoefler, P. Bientinesi, and B. Berkels, “Work-stealing prefix scan:
Addressing load imbalance in large-scale image registration,” 2020.

https://community.mellanox.com/s/article/ConnectX-6DX-Bluefield-2-IPsec-HW-Full-Offload-Configuration-Guide
https://community.mellanox.com/s/article/ConnectX-6DX-Bluefield-2-IPsec-HW-Full-Offload-Configuration-Guide
https://github.com/ofiwg/libfabric
https://aws.amazon.com/hpc/efa/
https://www.youtube.com/watch?v=NumH5YeVjHU
https://github.com/firecracker-microvm/firecracker
https://wg21.link/p0443r14

[69] S. Burckhardt et al., “Durable functions: Semantics for stateful serverless,” Proc. ACM
Program. Lang., vol. 5, 2021.

[70] C. Lee et al., “Granular computing,” in HotOS ’19.

	Introduction
	Background
	Resource Utilization
	FaaS Computing
	Remote Direct Memory Access

	RDMA-based Serverless Platform
	Components of rFaaS
	Allocation Leases
	Low-Latency Invocation
	Scalability
	Isolation and Security
	Modularity

	rFaaS in Detail
	Function Deployment
	Programming Model
	Billing

	rFaaS in Practice
	Invocation Latency
	Cold Invocation Overheads
	Bandwidth scalability
	Parallel scalability
	Use-case: serverless functions
	Use-case: parallel offloading
	Use-case: HPC Applications

	Related Work
	Discussion
	Conclusions

