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Abstract—Non-blocking collective operations have recently
been shown to be a promising complementary approach for over-
lapping communication and computation in parallel applications.
However, in order to maximize the performance and usability of
these operations it is important that they progress concurrently
with the application without introducing CPU overhead and
without requiring explicit user intervention. While studying non-
blocking collective operations in the context of our portable
library (libNBC), we found that most MPI implementations do
not sufficienctly support overlap over the InfiniBand network.
To address this issue, we developed a low-level communication
layer for libNBC based on the Open Fabrics InfiniBand verbs
API. With this layer we are able to achieve high degrees of
overlap without the need to explicitly progress the communication
operations. We show that the communication overhead of parallel
application kernels can be reduced up to 92% while not requiring
user intervention to make progress.

I. INTRODUCTION

Non-blocking collective operations have recently received

attention as a promising new class of communication opera-

tions [1]. Their benefits include better utilization of current

architectures due to communication/computation overlap [2]

and the mitigation of the negative effects caused by the

pseudo-synchronizing behavior [3] of collective operations.

Non-blocking collectives support the combination of com-

mon communication optimization mechanisms such as early

binding [4] and higher-level expressiveness of communication

operations [5].

Despite their many benefits, these operations are not avail-

able in the current Message Passing Interface (MPI) standards

[6], [7]. Several publications describe mechanisms that are

comparable to non-blocking collectives (NBC) [8], [9], [10],

but LibNBC [11] is the only freely available and portable

implementation of all MPI collective algorithms. An MPI-

optimized version of LibNBC for fully connected networks has

been presented in [12]. It was shown that LibNBC adds only

a negligible overhead to the communication path and enables

high degrees of overlap. The portable version of LibNBC is

built on top of non-blocking MPI point-to-point operations. As

a result, the overhead and the achievable overlap are directly

dependent on the overhead and (independent) progress of

MPI Isend and MPI Irecv in the underlying MPI library.
Several benchmarking studies about overlap [13], [14], [15]

show controversial results for different MPI libraries. However,

the studies do mainly agree that independent progress is

limited in current open-source MPI libraries. As we will

discuss below, our own experience was similar: the overlap

potential of current open-source MPI libraries is limited.

A. LibNBC Architecture

The current version of LibNBC is a software package that

offers non-blocking variants of all MPI collective operations.

LibNBC’s central element is a collective schedule that con-

tains all the information to execute a collective operation. A

schedule is usually different for every combination of rank

and argument. The schedule is generated in the immediate

function (e.g., NBC IBcast) and attached to the returned

NBC Handle (cf. MPI Request). A schedule may consist
of multiple logical rounds, where the next round can only be

started if all (potentially non-blocking) operations of the cur-

rent round finished, i.e., all operations which are in the same

round are executed simultaneously and must be independent.

Further details about the schedule layout and possible elements

are discussed in [12] and [16].

The execution of a schedule is performed by the scheduler

in LibNBC. The scheduler is responsible to start new commu-

nication rounds and to keep track of all open requests. The

scheduler is called after the creation of a new schedule (in the

immediate function, e.g., NBC IBcast) to start the first round

and every time when NBC Test is called. The scheduler tests

all outstanding communication requests for completion and

starts the next round if all are completed. It returns a special

flag (NBC OK) to the user if the last round (and therewith

the operation) was finished.

A special blocking version of the scheduler is called by

NBC Wait. The main difference between blocking and non-
blocking scheduler execution is that all calls to the underlying

communication system are blocking (MPI Wait instead of

MPI Test) and that the scheduler loops until the whole
schedule is executed.

However, the overlap potential is limited by this design,

mainly by two factors [12]. First, the user has to call

NBC Test periodically to advance the internal state of the
scheduler (start new communication rounds) and second, the

overlap is limited by the underlying MPI library.



The first problem could be solved if the scheduler was

executed in a separate progress thread. However, this would

require a thread-safe (MPI THREAD MULTIPLE) MPI li-

brary and thus limit portability significantly. The second

problem, the underlying communication system, causes a

higher performance loss. This could be overcome if another

transport layer would be used to send and receive messages

asynchronously. It would be beneficial if this transport layer

ensures asynchronous progress. However, the MPI standard

does not define a clear progress rule and the support for

asynchronous progress is limited.

The first step in optimizing LibNBC for a particular network

like InfiniBand would be to use the low-level network interface

in a way that enables highest overlap, full asynchronous

progress and is optimized for the needs of LibNBC. Not

all features of MPI are needed by LibNBC, for example,

the MPI library needs to implement a rather complicated

protocol to supportMPI ANY SOURCE which is not needed

by LibNBC. The requirements of LibNBC are listed in the

following.

• non-blocking send is used to start a send operation and

should return immediately (low overhead)

• non-blocking receive is used to post a receive and should

return immediately (low overhead)

• request objects are needed to identify outstanding com-

munications. All request objects have to be relocatable!

• communication contexts aka communicators are used

as a communication universe to represent MPI commu-

nicators passed by the user

• message tags are used to differentiate between multiple

different outstanding collective operations on a single

communicator

• message ordering message with the same tag must match

in the receiver side in the order they were issued on the

sender side

• test for completion this test should be non-blocking

and specific to a request object. It might be used

to progress the communication. However, fully asyn-

chronous progress is preferable.

• wait for completion is optional (can be a busy test),

but might be used for different optimizations (e.g., lower

power consumption by using blocking OS calls)

Having defined the requirements of LibNBC, we will briefly

describe the InfiniBand network in the next section.

B. The InfiniBand Network

InfiniBandTM [17] is a widely used cluster interconnect that

supports many different options to transmit messages. We

analyzed the performance of different transport functions and

types in [18]. This analysis limits our choice to RDMA-Write

over Reliable Connection and Send/Receive of Unreliable

Datagrams. Different works have shown that the Unreliable

Datagram transport can be beneficial at large scale [19], [20],

[21], however the complexity of the implementation that has

to ensure reliability in software seemed not feasible for our

first implementation and we chose RDMA-Write.

To use the Reliable Connection transport type, the commu-

nicating nodes need to be connected via Queue Pairs (QP),

consisting of a Send Queue (SQ) and a Receive Queue (RQ)

that form a communication channel. The user can post Send

Requests (SR) or Receive Requests (RR) to the queues which

then operate fully asynchronously. SRs and RRs, are processed

asynchronously and in order by the Host Channel Adapter

(HCA) and when a SR finishes or fails, a completion entry

is generated in the associated Completion Queue. All sent

or received memory has to be registered with a call to the

InfiniBandTM library. This call usually performs operating

system tasks (i.e., pinning of memory and adjusting translation

tables) [22] and is thus expected to be slow. A usual way to

reduce the impact of memory registration is lazy deregistration

combined with a registration cache [23], [24] to re-use existing

registrations if possible.

An MPI optimized version of LibNBC exists and different

MPI implementations could be used to match it to InfiniBand.

The overlap potential of an exemplary MPI implementation

with LibNBC will be analyzed in the following Section.

II. MPI IMPLEMENTATIONS FOR IB

Two popular MPI implementations for InfiniBand, Open

MPI and MVAPICH, exhibit similar performance character-

istics. Neither implementation offers asynchronous progress

(a progress thread) of outstanding messages. The two-sided

semantics of MPI force the implementer to implement a

protocol where the sender has to wait until the receiver posted

the receive request because the message size is not limited

(this prevents the usage of pre-posted receive buffers). This

protocol is commonly called “rendezvous protocol”. Another

MPI feature, the MPI ANY SOURCE semantics, force the

implementation to perform at least three message exchanges

for every large message [25].

All benchmarks are conducted on the “odin” cluster at

Indiana University. Odin consists of 128 nodes with dual cpu

dual core 2.0Ghz Opteron 270 HE processors connected with

Mellanox Technologies MT23108 InfiniHost adapters to a 288

port InfiniBand switch. Due to space restrictions and imple-

mentation difficulties with MVAPICH1, we decided to analyze

Open MPI in detail. Since the investigated MPI libraries

don’t have (fully) asynchronous progress for large messages,

the user-program has to progress the requests manually. The

only way to do this in a fully portable way is to test every

outstanding request for completion because the MPI stan-

dard mandates that repeated calls MPI Test must complete

a request eventually. However, calling MPI Test during the

computation is not only a software-technological nightmare

(passing the requests down to the computation kernels) but

is also a source of two kinds of significant overhead. The

first source of overhead is simply the time spent in MPI Test
itself. The second overhead source is less obvious but more

influential. Calls to libraries (e.g., BLAS [26]) must be split

1’MPIDI CH3I RMDA init(95): Error initializing MVAPICH2 malloc li-
brary’



up into smaller portions which, first, destroys code structure,

and, second, might lower efficiency (i.e., cache efficiency, the

cache is also polluted by the calls to MPI Test). Thus, calling

test is not a feasible option. However, not calling any test with

the MPI implementations results simply in no overlap at all

(see analyses in the following section).

Thus, the user of the current LibNBC is forced to perform

test calls in his code. Accepting this, the user faces another

problem because the decision when and how often test should

be called is non-trivial. Too many calls cause unnecessary

overhead and not enough calls will not progress the library and

causes unnecessary waiting. It is easy to show that the optimal

“test-patterns” depend on the protocol used by the MPI library

and therewith on the library itself. Given this complexity that

an application programmer faces today, he usually just applies

a simple heuristic of calling test when it is convenient or not

at all. However, overlap performance in this case is clearly

suboptimal.

We will analyze different test strategies in the following

section with the goal of deriving better heuristics.

A. Open MPI Message Progression for LibNBC

We use LibNBC to analyze the progression strategies.

LibNBC’s scheduler calls MPI Testall on all outstanding

requests related to the NBC Handle that NBC Test is called

with. Thus, the test behavior is transparent. We extended our

benchmark NBCBench which was first introduced in [12] to

support different test strategies. NBCBench follows the princi-

ples for collective benchmarking described in [27], [28], [29]

to ensure highly accurate results. The benchmark is run twice

for every combination of message size and communicator

size. The first run determines the time that the (blocking)

execution takes and the second run runs a computation of the

length of the first run between init and wait of the collective

communication. The implemented test strategy issues N tests

in equidistant times during the simulated computation. N is

a function of the message size and therewith indirectly of the

transfer time, it is computed as

N =

⌊

size

interval

⌋

+ 1

For example, if the datasize is 4096 bytes and the interval is

2048 bytes, the benchmark issues one test at the beginning,

one after 50% of the computation and one at the end. The

test-interval is chosen by the user.

We chose two collectives that are not influenced by the

missing asynchronous progress of LibNBC itself, but repre-

sent a common subset. The first operation, NBC Igather,
represents a many-to-one operation while the second oper-

ation, NBC Ialltoall represents the group of many-to-many

collectives.

We benchmarked different test-intervals (0 for no tests,

1024, 2048, 4096 and 8192) for NBC Igather and

NBC Ialltoall for 16 and 64 nodes. We analyzed two different
memory registration modes of Open MPI, leave pinned (where

the memory is cached in a registration cache) and no leave

pinned (the memory is registered in a pipelined way to overlap

registration and communication) [25].

Figure 1 and 2 show the results of the overhead benchmark

with Open MPI 1.2.4/openib on 16 and 64 nodes respec-

tively. The overhead is defined as the time that is spent for
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communication. This is not the latency, but the sum of the

time spent in initialization (e.g., the call to NBC Igather
call), testing (NBC Test) and the waiting time at the end

(NBC Wait). Thus, the benchmark models the ideal overlap

if all communication can be overlapped. The cases where no
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tests were performed were equal to the blocking execution of

MPI Alltoall in this scenario (no overlap at all). The optimal

test intervals differ between 16 and 64 nodes. While, on 64

nodes, testing every 1024 bytes seems most beneficial, a test-

interval of 8192 bytes performs better on 16 nodes.

The results for NBC Igather on 64 nodes, shown in Fig-

ure 3, show also different optimal test-intervals. It is even

more complicated because a test-interval of 2048 bytes seems

better for several message sizes. Thus, we can conclude that

the optimal test strategy does not only depend on the MPI

implementation, but also on the message size and communi-
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cator size. A simple heuristic does not seem feasible. However,

testing itself is suboptimal for several reasons, thus we should

focus on different strategies.

This section has shown that even if the application program-

mer is willing to progress the MPI manually, the selection of

an optimal strategy is highly non-trivial (and not very likely to

be performed by a developer). Thus, we decided to implement

a library that offers all necessary features to LibNBC directly

on top of InfiniBandTM (the OFED verbs interface). The design

and implementation of this library is described in the next

section.

III. IMPLEMENTATION

Many MPI implementations are tuned for microbenchmark

performance of the blocking Send/Recv operations. Thus,

things like minimal CPU overhead are often neglected to

achieve higher blocking performance. Only some implemen-

tations, like [30], optimize for overlap and often need to be

enabled explicitely. In the design of LibOF, we did not focus

on microbenchmark performance but we tried to minimize the

CPU overhead (and thus maximal overlap). Thus, our blocking

microbenchmark results are expected to be slightly worse than

Open MPI’s. Measurements with blocking communication

showed that our microbenchmark latency and bandwidth lie

within a 5% margin of Open MPI’s. Plots of those results can

just be omitted.

Additionally to the low overhead of the calls themselves, we

also have to ensure that there is no need to call them often.

To achieve this, we have to design protocols that enable the

maximum asynchronism between the calling program and the

InfiniBandTM network which offers asynchronous progress.

The library use MPI communicators as communication

context. It attaches it’s data as an attribute to every commu-

nicator. This communicator-specific structure stores all peer-

specific information for this communicator and is initialized

at the first use of this communicator. Due to the InfiniBandTM

connection establishment mechanisms, the first call with every

communicator is blocking and needs to be performed by all

ranks in the communicator to avoid deadlocks.

Orienting on current MPI implementations, we decided to

implement an Eager and Rendezvous protocol in order to

achieve the blocking performance. Those protocols will be

described in the following.

A. Eager Protocol

Our Eager protocol is designed to proceed completely

asynchronously of the calling program. Every peer has a

number of buffers that can store the eager message, its size

the tag and some protocol information. Those peer-specific

buffers are registered during communicator initialization and

the necessary data (r_key, address) is exchanged. When

a new send operation is initiated with OF_Isend, all neces-

sary data is attached to the request, which is set to the status

EAGER_SEND_INIT, and the function returns to the user.

The first test call with this request copies the data into a

pre-registered send-buffer (if available) and posts a signaled

RDMA_WRITE send request to the peer’s SQ. The send-buffer

is a linear array in memory and a tag of −1 marks an entry as

unused. To find an unused buffer, the array is scanned for a tag

equal to −1 and the buffer-index is attached to the request. The

WR id is set to the address of the request so that the buffer can

be freed (tag set to −1) when the WR completes on the send

side. OF_Irecv attaches the arguments to the request and sets

the request’s status to RECV_WAITING_EAGER. Every test

on a request with this status scans the eager array for the tag.

It copies the data in the receive buffer if the tag is found and

notifies the sender that the receive buffer can be re-used. The

notifications (EAGER_ACKs) are piggybacked (in the protocol

information) to other eager messages or sent explicitly if more

than a certain number of eager buffers are used.

B. Rendezvous Protocol

Our rendezvous protocol differs from the protocol used in

any MPI implementation because LibNBC does not require

a receive from any source. Thus, we can drive a receiver-

based protocol where the receiver initiates the communication

and the sender is passive until it is triggered. The receiver

attaches all necessary information to the request and sets

it to RNDV_RECV_INIT during OF_Irecv function. The

first test on this request registers the receive buffer, packs

tag, r_key and address into a preregistered RTR message

buffer. This buffer is then sent with RDMA_WRITE to a pre-

registered location at the sender and the request is set to

RECV_SENDING_RTR. The RTR send buffer is freed with a

similar mechanism as the eager send buffer. OF_Isend sets

the request’s status to SEND_WAITING_RTR after attaching

the arguments to the request and registering the send memory.

A test on the sender-side scans the RTR array for the request’s

tag. If the tag is found, it posts the RDMA_WRITE_WITH_IMM

send request to its local SQ and sets the request status to

SEND_SENDING_DATA. A receive request is finished when

the receiver received the data.

C. Optimizing for Overlap

Optimizing for overlap means minimizing the CPU

overhead and maximizing the asynchronous InfiniBandTM



progress. We minimize the CPU overhead by using our opti-

mized protocols that only use a minimal number of operations

to send and receive messages. For example, we use only a

single CQ for send and receive requests because polling a CQ

is relatively expensive [18].

Achieving the maximum asynchronism is easy in the case

of the eager protocol and tricky in the case of rendezvous. A

first simple optimization, called test-on-init in the following,

is to call the first test in the send of the eager protocol and

the receive in the rendezvous protocol during the OF_Isend

and OF_Irecv functions respectively. This hands the (ready)

message immediately to the InfiniBandTM network and does

not introduce unnecessary waiting until the first test is called

by the user. However, it obviously increases the CPU overhead

in those functions.

The test-on-init optimization makes the progress in the

eager protocol completely asynchronous (no test is necessary

to “push” messages). However, the rendezvous protocol does

still need a test on the sender-side to send the message after

the RTR arrived. Thus, no progress will happen before the

test. The optimal time between the OF_Isend and the first

test is also not trivially determinable (it would be a single

latency if recv and send were started at the same global

time). A simple approach would be to poll test until the

RTR message has arrived, but this might introduce deadlocks

because OF_Isendwould depend on the receiver. We decided

to implement a timeout-based mechanism that polls only a

limited time to avoid deadlocks and will refer to it later as

“wait-on-send”. However, this mechanism increases the CPU

overhead of the rendezvous send drastically. We will discuss

techniques to mitigate this after we analyzed and compared

the influence in the next section.

IV. PERFORMANCE RESULTS

We compare the overhead and overlap of our implementa-

tion to Open MPI’s overhead with different techniques. We

used two different microbenchmarking tools, Netgauge and

NBCBench to assess raw performance. Real-world results

are shown with two application kernel benchmarks, parallel

compression and three-dimensions Fast Fourier Transform (3d-

FFT).

A. Netgauge

Netgauge [31] is a tool to benchmark different network

characteristics. Its key features are wide support for different

networks (e.g., MPI) and communication patterns (e.g., LogGP

[32]), an extremely easy interface to implement new patterns

and/or network protocols and the portable high precision

timing interface. We extended Netgauge with a module to use

LibOF as communication channel and added a new commu-

nication pattern which assesses the overheads of non-blocking

communication. The module’s implementation is trivial and

just maps Netgauge’s (blocking and non-blocking) send/recv

and test functions to OF_Isend, OF_Irecv and OF_Test.

The communication pattern “nbov” does a simple ping-pong

and measures the times to issue the non-blocking send or

receive calls and loops on test until the operation succeeds.

Additionally, it takes the time for all calls to test and divides

them by the number of tests issued to get a rough estimation

for the average time for the test operation. We use the

Netgauge’s high-precision timers (RDTSC [33]) to benchmark

single messages and repeat the ping-pong procedure multiple

times (1000) and average the results afterwards.

We ran our new pattern with Open MPI and LibOF to deter-

mine the overheads. The Isend overhead is shown in Figure 4.

We set the eager protocol limit to 255 bytes for LibOF and
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Open MPI. LibOF without test-on-init performs best because it

does not start any operation during the Isend. The wait-on-send

adds a huge overhead to every send operation as expected.

The Irecv overheads are shown in Figure 5. The wait-
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on-send and test-on-init show the same performance because

wait-on-send implies test-on-init and the receiver side is not

different. The overhead of registering the memory and sending

the RTR message can be seen when the protocol is switched

to rendezvous. It is still not clear if the minimization of the

send/recv overhead is more important then the minimization

of the test overhead.



The test overheads are omitted due to space restrictions and

lie in a range from 0.1 (rendezvous) to 2 (eager) microseconds.

B. Optimizing Wait-On-Send

We saw in the previous Section that wait-on-send adds a

huge constant CPU overhead per message. LibNBC usually

issues many messages at the same time (dependent on com-

municator size) so that this overhead adds up per message. To

mitigate this effect and since we have transparent access to our

implementation, we implemented a hook OF_Startall in

LibOF that progresses multiple send requests until they leave

the status SEND_WAITING_RTR. Thus, the overhead (which

is basically the waiting time for the RTR to be transmitted)

is only paid once for multiple messages. The OF_Startall

is called by LibNBC directly after a new round is started and

has also a timeout mechanism to prevent deadlocks.

C. NBCBench

We use NBCBench again to compare our implementation

with the best results (with the “optimal” test interval) achieved

with Open MPI (cf. Section II-A). We ran the same test-

intervals as previously used with and without test-on-init.

We ran the wait-on-send implementation only without tests

because it is designed to run asynchronously and test would

only add overhead.

The results for NBC Ialltoall on 16 and 64 nodes are shown

in Figure 6 and 7 respectively. The results indicate that our
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wait-on-send implementation (the optimized version) performs

best in nearly all cases. The 64 node case where test-on-

init with tests every 8192 bytes performs better lies in the

small message range where blocking collective operations are

faster (the overhead of generating the schedule is significant

for small messages, cf. [12]).

Similar results can be found in Figures 8 and 9 which

shown the comparison for NBC Igather on 16 and 64 nodes
respectively.

All the benchmarks and results in this paper have been

presented for LibNBC’s non-blocking collectives. Figure 10

compares the Performance of NBC Ialltoall (A2A) and
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NBC Igather (GAT) to the highly optimized blocking MPI
implementations [34].
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D. Parallel Compression

Our parallel compression benchmark has first been in-

troduced in [12] to analyze the influence of non-blocking

collective operations to real application benchmarks. The com-

pression benchmark represents any scientific application where

data is processed (in our case compressed) in a distributed

way and gathered to a single node at the end (e.g., to write

it to mass storage). The final gathering is tricky because

before the NBC Igatherv or MPI Gatherv can be issued,

a MPI Gather has to be preformed to know the datasize of
every rank. The first Gather is non-overlappable. Figure 11

shows the communication overhead for the compression of
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Fig. 11. Parallel compression communication overhead on 64 down to 4
nodes.

122MB on different node counts with blocking MPI calls,

non-blocking calls with the standard LibNBC (based on

MPI Isend/Irecv calls performing NBC Test to progress)
and our optimized LibNBC/OF without tests using the wait-

on-send implementation.

E. Parallel 3d-FFT

The parallel 3-dimensional FFT has also been introduced

in [12] as an application-kernel benchmark to analyze non-

blocking collective operations. We show results of a transfor-

mation of a 6403 system on 64, 32 and 16 nodes and due

to memory limitations, a 3203 system on 8, 4 and 2 nodes

running one process per node in Figure 12. The results show
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Fig. 12. 3d-FFT communication overhead on 64 down to 2 nodes.

clearly that the communication overhead and therewith the

computation time is reduced significantly. The 6403 system

could not be transformed with LibNBC on top of Open MPI.2

V. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed the performance of LibNBC

on InfiniBandTM in detail and investigated several options

to minimize the communication overhead (in order to max-

imize communication overlap). We showed that reasonable

performance can be achieved at the user level using MPI

and appropriate invocation patterns of MPI Test (to guarantee
progress of MPI). However, the invocation patterns depend not

only on the MPI implementation but also on the communicator

size and data size. We showed that, in general, the programmer

would not able to derive simple and optimal heuristics for

progressing MPI. Furthermore, having to manually progress

MPI in this way is generally suboptimal (code structure

and overheads). Based on the requirements of LibNBC, we

implemented a low-level interface which uses the OFED

verbs directly to communicate. We propose a new rendezvous

protocol that does not require user-level intervention to make

independent progress in the network. Furthermore, we show

with several microbenchmarks and application kernels that

our implementation performs significantly better than blocking

communication and non-blocking communication based on

Open MPI.

Future work includes the analysis of using threads for the

asynchronous progress. We avoided threads in this work to

2it crashed with an InfiniBandTM “RETRY EXCEEDED ERROR” in all
runs (we suspect that the huge number of MPI Isend/Irecv operations caused
this problem)



retain portability to systems that do not support threads like

the newest Cray XT or Blue Gene/L machines. Furthermore,

we will implement an abstract interface in LibNBC to en-

able easy network-specific extensions. We will also analyze

the implementation of InfiniBand-optimized collectives (e.g.,

multicast-based broadcast [35] or RDMA-based barrier [36])

in our library.

ACKNOWLEDGMENT

Thanks to Gleb Natapov (Voltaire), Christian Siebert (NEC)

and the anonymous reviewers for helpful comments. This

work was supported by a grant from the Lilly Endowment,

National Science Foundation grant EIA-0202048 and a gift the

Silicon Valley Community Foundation on behalf of the Cisco

Collaborative Research Initiative and a grant by the Saxon

Ministry of Science and the Fine Arts.

REFERENCES

[1] T. Hoefler, J. Squyres, G. Bosilca, G. Fagg, A. Lumsdaine, and W. Rehm,
“Non-Blocking Collective Operations for MPI-2,” Open Systems Lab,
Indiana University, Tech. Rep., 08 2006.

[2] T. Hoefler, J. Squyres, W. Rehm, and A. Lumsdaine, “A Case for
Non-Blocking Collective Operations,” in Frontiers of High Performance
Computing and Networking - ISPA 2006 Workshops, vol. 4331/2006.
Springer Berlin / Heidelberg, 12 2006, pp. 155–164. [Online]. Available:
./img/hoefler-ispa06.pdf

[3] F. Petrini, D. J. Kerbyson, and S. Pakin, “The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8, 192 Processors of ASCI Q.” in Proceedings of the ACM/IEEE
Supercomputing. ACM, 2003, p. 55.

[4] R. Dimitrov, “Overlapping of communication and computation and early
binding: Fundamental mechanisms for improving parallel performance
on clusters of workstations,” Ph.D. dissertation, Mississippi State Uni-
versity, 2001.

[5] S. Gorlatch, “Send-receive considered harmful: Myths and realities of
message passing,” ACM Trans. Program. Lang. Syst., vol. 26, no. 1, pp.
47–56, 2004.

[6] Message Passing Interface Forum, “MPI: A Message Passing Interface
Standard,” 1995.

[7] ——, “MPI-2: Extensions to the Message-Passing Interface,” Technical
Report, University of Tennessee, Knoxville, 1997.

[8] ——, “MPI-2 Journal of Development,” July 1997.
[9] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany, “Transformations
to parallel codes for communication-computation overlap,” in SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2005, p. 58.

[10] L. V. Kale, S. Kumar, and K. Vardarajan, “A Framework for Collec-
tive Personalized Communication,” in Proceedings of IPDPS’03, Nice,
France, April 2003.

[11] T. Hoefler and A. Lumsdaine, “Design, Implementation, and Usage of
LibNBC,” Open Systems Lab, Indiana University, Tech. Rep., 08 2006.

[12] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for mpi,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing

(CDROM), 2007.
[13] C. Iancu, P. Husbands, and P. Hargrove, “Hunting the overlap,” in

PACT ’05: Proceedings of the 14th International Conference on Parallel

Architectures and Compilation Techniques (PACT’05). Washington,
DC, USA: IEEE Computer Society, 2005, pp. 279–290.

[14] J. W. III and S. Bova, “Where’s the Overlap? - An Analysis
of Popular MPI Implementations,” 1999. [Online]. Available:
citeseer.ist.psu.edu/white99wheres.html

[15] W. Lawry, C. Wilson, A. B. Maccabe, and R. Brightwell, “Comb: A
portable benchmark suite for assessing mpi overlap.” in CLUSTER.
IEEE Computer Society, 2002, pp. 472–475.

[16] T. Hoefler and A. Lumsdaine, “Design and implementation of the nbc
library,” Indiana University, Tech. Rep., 2006.

[17] The InfiniBand Trade Association, Infiniband Architecture Specification
Volume 1, Release 1.2, InfiniBand Trade Association, 2003.

[18] T. Hoefler, C. Viertel, T. Mehlan, F. Mietke, and W. Rehm, “Assess-
ing Single-Message and Multi-Node Communication Performance of
InfiniBand,” in Proceedings of IEEE PARELEC 2006. IEEE Computer
Society, 9 2006, pp. 227–232.

[19] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “High performance MPI
design using unreliable datagram for ultra-scale InfiniBand clusters,” in
Proceedings of the 21st annual international conference on Supercom-

puting. New York, NY, USA: ACM Press, 2007, pp. 180–189.
[20] A. Friedley, T. Hoefler, M. L. Leininger, and A. Lumsdaine, “Scalable

High Performance Message Passing over InfiniBand for Open MPI,” in
Proceedings of 2007 KiCC Workshop, RWTH Aachen, December 2007.

[21] M. J. Koop, S. Sur, Q. Gao, and D. K. Panda, “Zero-Copy Protocol for
MPI using InfiniBand Unreliable Datagram,” in IEEE Cluster 2007:
International Conference on Cluster Computing, Austin, TX, USA,
September 17-20, 2007.

[22] F. Mietke, R. Baumgartl, R. Rex, T. Mehlan, T. Hoefler, and W. Rehm,
“Analysis of the Memory Registration Process in the Mellanox Infini-
Band Software Stack,” in Euro-Par 2006 Parallel Processing. Springer-
Verlag Berlin, 8 2006, pp. 124–133.

[23] J. Liu, J. Wu, and D. K. Panda, “High Performance RDMA-Based MPI
Implementation over InfiniBand,” Int’l Journal of Parallel Programming,
2004, 2004.

[24] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, Concept, and Design of a Next Generation MPI Implementa-
tion,” in Proceedings, 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004.

[25] G. M. Shipman, T. S. Woodall, G. Bosilca, R. ch L. Graham, and
A. B. Maccabe, “High performance RDMA protocols in HPC,” in
Proceedings, 13th European PVM/MPI Users’ Group Meeting, ser.
Lecture Notes in Computer Science. Bonn, Germany: Springer-Verlag,
September 2006.

[26] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, “Basic Linear
Algebra Subprograms for FORTRAN usage,” in In ACM Trans. Math.
Soft., 5 (1979), pp. 308-323, 1979.

[27] W. Gropp and E. L. Lusk, “Reproducible measurements of mpi perfor-
mance characteristics,” in Proceedings of the 6th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine

and Message Passing Interface. London, UK: Springer-Verlag, 1999.
[28] T. Worsch, R. Reussner, and W. Augustin, “On benchmarking collective

mpi operations,” in Proceedings of the 9th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface. London, UK: Springer-Verlag, 2002.
[29] T. Hoefler, T. Schneider, and A. Lumsdaine, “Accurately Measuring

Collective Operations at Massive Scale,” in Accepted to the PMEO-
PDS 08 workshop in conjunction with the 22nd International Parallel
and Distributed Processing Symposium (IPDPS), April 2008.

[30] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “Rdma read based
rendezvous protocol for mpi over infiniband: design alternatives and
benefits,” in PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming. New
York, NY, USA: ACM, 2006, pp. 32–39.

[31] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm, “Netgauge: A
Network Performance Measurement Framework,” in Proceedings of
Third International Conference, HPCC 2007, vol. 4782. Springer, 9
2007, pp. 659–671. [Online]. Available: ./img/hoefler-netgauge.pdf

[32] T. Hoefler, A. Lichei, and W. Rehm, “Low-Overhead LogGP Parameter
Assessment for Modern Interconnection Networks,” 03 2007. [Online].
Available: ./img/hoefler-pmeo07.pdf

[33] Intel Corporation, “Intel Application Notes - Using the RDTSC Instruc-
tion for Performance Monitoring,” Intel, Tech. Rep., 1997.

[34] J. M. Squyres and A. Lumsdaine, “The Component Architecture of
Open MPI: Enabling Third-Party Collective Algorithms,” in 18th ACM
International Conference on Supercomputing, Workshop on Component
Models and Systems for Grid Applications, St. Malo, France, 2004.

[35] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time
MPI Broadcast Algorithm for large-scale InfiniBand Clusters with
Multicast,” in Proceedings of the 21st IEEE International Parallel &
Distributed Processing Symposium. IEEE Computer Society, 03 2007,
p. 232. [Online]. Available: ./img/hoefler-cac07.pdf

[36] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “Fast Barrier Synchro-
nization for InfiniBand,” in Proceedings, 20th International Parallel and
Distributed Processing Symposium IPDPS 2006 (CAC 06), April 2006.


